These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28177409)

  • 21. Dissolved Reactive Phosphorus Loads to Western Lake Erie: The Hidden Influence of Nanoparticles.
    River M; Richardson CJ
    J Environ Qual; 2019 May; 48(3):645-653. PubMed ID: 31180434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of constraints to water quality improvements in the Western Lake Erie Basin.
    Sekaluvu L; Zhang L; Gitau M
    J Environ Manage; 2018 Jan; 205():85-98. PubMed ID: 28968590
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Internal Phosphorus Storage in Two Headwater Agricultural Streams in the Lake Erie Basin.
    Casillas-Ituarte NN; Sawyer AH; Danner KM; King KW; Covault AJ
    Environ Sci Technol; 2020 Jan; 54(1):176-183. PubMed ID: 31763838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. One size does not fit all: Toward regional conservation practice guidance to reduce phosphorus loss risk in the Lake Erie watershed.
    Macrae M; Jarvie H; Brouwer R; Gunn G; Reid K; Joosse P; King K; Kleinman P; Smith D; Williams M; Zwonitzer M
    J Environ Qual; 2021 May; 50(3):529-546. PubMed ID: 33742722
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface runoff and tile drainage transport of phosphorus in the midwestern United States.
    Smith DR; King KW; Johnson L; Francesconi W; Richards P; Baker D; Sharpley AN
    J Environ Qual; 2015 Mar; 44(2):495-502. PubMed ID: 26023968
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Orthophosphorus Contributions to Total Phosphorus Concentrations and Loads in Iowa Agricultural Watersheds.
    Schilling KE; Kim SW; Jones CS; Wolter CF
    J Environ Qual; 2017 Jul; 46(4):828-835. PubMed ID: 28783777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitrate and phosphorus transport through subsurface drains under free and controlled drainage.
    Saadat S; Bowling L; Frankenberger J; Kladivko E
    Water Res; 2018 Oct; 142():196-207. PubMed ID: 29883893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluating agricultural nonpoint-source pollution programs in two Lake Erie tributaries.
    Forster DL; Rausch JN
    J Environ Qual; 2002; 31(1):24-31. PubMed ID: 11837427
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extending vegetative cover with cover crops influenced phosphorus loss from an agricultural watershed.
    Hanrahan BR; Tank JL; Speir SL; Trentman MT; Christopher SF; Mahl UH; Royer TV
    Sci Total Environ; 2021 Dec; 801():149501. PubMed ID: 34438141
    [TBL] [Abstract][Full Text] [Related]  

  • 30. River phosphorus cycling during high flow may constrain Lake Erie cyanobacteria blooms.
    King WM; Curless SE; Hood JM
    Water Res; 2022 Aug; 222():118845. PubMed ID: 35868100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Watershed- and reach-scale drivers of phosphorus retention and release by streambed sediment in a western Lake Erie watershed during summer.
    Kreiling RM; Perner PM; Breckner KJ; Williamson TN; Bartsch LA; Hood JM; Manning NF; Johnson LT
    Sci Total Environ; 2023 Mar; 863():160804. PubMed ID: 36567200
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphorus reductions following riparian restoration in two agricultural watersheds in Vermont, USA.
    Meals DW; Hopkins RB
    Water Sci Technol; 2002; 45(9):51-60. PubMed ID: 12079124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphorus export by runoff from agricultural field plots with different crop cover in Lake Taihu watershed.
    Yan WJ; Huang MX; Zhang S; Tang YJ
    J Environ Sci (China); 2001 Oct; 13(4):502-7. PubMed ID: 11723941
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relating management practices and nutrient export in agricultural watersheds of the United States.
    Sprague LA; Gronberg JA
    J Environ Qual; 2012; 41(6):1939-50. PubMed ID: 23128751
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphorus transport pathways to streams in tile-drained agricultural watersheds.
    Gentry LE; David MB; Royer TV; Mitchell CA; Starks KM
    J Environ Qual; 2007; 36(2):408-15. PubMed ID: 17255628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increasing the Effectiveness and Adoption of Agricultural Phosphorus Management Strategies to Minimize Water Quality Impairment.
    Osmond DL; Shober AL; Sharpley AN; Duncan EW; Hoag DLK
    J Environ Qual; 2019 Sep; 48(5):1204-1217. PubMed ID: 31589706
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of phosphorus sources in rural watersheds.
    Withers PJ; Jarvie HP; Hodgkinson RA; Palmer-Felgate EJ; Bates A; Neal M; Howells R; Withers CM; Wickham HD
    J Environ Qual; 2009; 38(5):1998-2011. PubMed ID: 19704143
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A spatial analysis of phosphorus in the Mississippi river basin.
    Jacobson LM; David MB; Drinkwater LE
    J Environ Qual; 2011; 40(3):931-41. PubMed ID: 21546679
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Do reductions in agricultural field drainage during the growing season impact bacterial densities and loads in small tile-fed watersheds?
    Wilkes G; Sunohara MD; Topp E; Gottschall N; Craiovan E; Frey SK; Lapen DR
    Water Res; 2019 Mar; 151():423-438. PubMed ID: 30639728
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stream Nitrogen and Phosphorus Loads Are Differentially Affected by Storm Events and the Difference May Be Exacerbated by Conservation Tillage.
    Kelly PT; Renwick WH; Knoll L; Vanni MJ
    Environ Sci Technol; 2019 May; 53(10):5613-5621. PubMed ID: 30861345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.