These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 28177417)

  • 1. Colloid Mobilization and Seasonal Variability in a Semiarid Headwater Stream.
    Mills TJ; Anderson SP; Bern C; Aguirre A; Derry LA
    J Environ Qual; 2017 Jan; 46(1):88-95. PubMed ID: 28177417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of pH, ionic strength, dissolved organic matter, and flow rate on the co-transport of MS2 bacteriophages with kaolinite in gravel aquifer media.
    Walshe GE; Pang L; Flury M; Close ME; Flintoft M
    Water Res; 2010 Feb; 44(4):1255-69. PubMed ID: 20003998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloid and heavy metal transport at landfill sites in direct contact with groundwater.
    Baumann T; Fruhstorfer P; Klein T; Niessner R
    Water Res; 2006 Aug; 40(14):2776-86. PubMed ID: 16820185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics and sources of colloids in shallow groundwater in lowland wells and fracture flow in sloping farmland.
    Zhang W; Cheng JH; Xian QS; Cui JF; Tang XY; Wang GX
    Water Res; 2019 Jun; 156():252-263. PubMed ID: 30921541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stream-subsurface exchange of zinc in the presence of silica and kaolinite colloids.
    Ren J; Packman AI
    Environ Sci Technol; 2004 Dec; 38(24):6571-81. PubMed ID: 15669314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloid mobilization and arsenite transport in soil columns: effect of ionic strength.
    Zhang H; Selim HM
    J Environ Qual; 2007; 36(5):1273-80. PubMed ID: 17636288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Groundwater controls on colloidal transport in forest stream waters.
    Gottselig N; Sohrt J; Uhlig D; Nischwitz V; Weiler M; Amelung W
    Sci Total Environ; 2020 May; 717():134638. PubMed ID: 31837854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colloid dispersion on the pore scale.
    Baumann T; Toops L; Niessner R
    Water Res; 2010 Feb; 44(4):1246-54. PubMed ID: 20042215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of simultaneous exchange of colloids and sorbing contaminants between streams and streambeds.
    Ren J; Packman AI
    Environ Sci Technol; 2004 May; 38(10):2901-11. PubMed ID: 15212266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloid-facilitated transport of cesium in vadose-zone sediments: the importance of flow transients.
    Cheng T; Saiers JE
    Environ Sci Technol; 2010 Oct; 44(19):7443-9. PubMed ID: 20812714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mobile colloid generation induced by a cementitious plume: mineral surface-charge controls on mobilization.
    Li D; Kaplan DI; Roberts KA; Seaman JC
    Environ Sci Technol; 2012 Mar; 46(5):2755-63. PubMed ID: 22316126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colloid transport and deposition in water-saturated Yucca Mountain tuff as determined by ionic strength.
    Gamerdinger AP; Kaplan DI
    Environ Sci Technol; 2001 Aug; 35(16):3326-31. PubMed ID: 11529572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct observations of colloid retention in granular media in the presence of energy barriers, and implications for inferred mechanisms from indirect observations.
    Johnson WP; Pazmino E; Ma H
    Water Res; 2010 Feb; 44(4):1158-69. PubMed ID: 20132959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colloid Mobilization in a Fractured Soil during Dry-Wet Cycles: Role of Drying Duration and Flow Path Permeability.
    Mohanty SK; Saiers JE; Ryan JN
    Environ Sci Technol; 2015 Aug; 49(15):9100-6. PubMed ID: 26134351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloid Mobilization in a Fractured Soil: Effect of Pore-Water Exchange between Preferential Flow Paths and Soil Matrix.
    Mohanty SK; Saiers JE; Ryan JN
    Environ Sci Technol; 2016 Mar; 50(5):2310-7. PubMed ID: 26829659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloid characterization and in situ release in shallow groundwater under different hydrogeology conditions.
    Zhou J; Liu D; Zhang W; Chen X; Huan Y; Yu X
    Environ Sci Pollut Res Int; 2017 Jun; 24(16):14445-14454. PubMed ID: 28439687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity.
    Torkzaban S; Bradford SA; Vanderzalm JL; Patterson BM; Harris B; Prommer H
    J Contam Hydrol; 2015 Oct; 181():161-71. PubMed ID: 26141344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of conventional membrane and tangential flow ultrafiltration artifacts and their application to the characterization of freshwater colloids.
    Morrison MA; Benoit G
    Environ Sci Technol; 2004 Dec; 38(24):6817-23. PubMed ID: 15669344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation and characterization of colloids derived from leached cement hydrates.
    Fujita T; Sugiyama D; Swanton SW; Myatt BJ
    J Contam Hydrol; 2003 Mar; 61(1-4):3-16. PubMed ID: 12598090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence of colloids as important phosphorus carriers in natural soil and stream waters in an agricultural catchment.
    Gu S; Gruau G; Dupas R; Jeanneau L
    J Environ Qual; 2020 Jul; 49(4):921-932. PubMed ID: 33016496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.