These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28177741)

  • 41. Interactions of sprint interval exercise and psychological need-support on subsequent food intake among physically inactive men and women.
    Beer NJ; Dimmock JA; Jackson B; Guelfi KJ
    Appl Physiol Nutr Metab; 2020 Aug; 45(8):835-844. PubMed ID: 32017599
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of Number of Sprints in an SIT Session on Change in V˙O2max: A Meta-analysis.
    Vollaard NBJ; Metcalfe RS; Williams S
    Med Sci Sports Exerc; 2017 Jun; 49(6):1147-1156. PubMed ID: 28079707
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impact of time and work:rest ratio matched sprint interval training programmes on performance: A randomised controlled trial.
    Lloyd Jones MC; Morris MG; Jakeman JR
    J Sci Med Sport; 2017 Nov; 20(11):1034-1038. PubMed ID: 28410999
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Moderating Role of Recovery Durations in High-Intensity Interval-Training Protocols.
    Schoenmakers PPJM; Hettinga FJ; Reed KE
    Int J Sports Physiol Perform; 2019 Jul; 14(6):859–867. PubMed ID: 31146621
    [No Abstract]   [Full Text] [Related]  

  • 45. Short- or long-rest intervals during repeated-sprint training in soccer?
    Iaia FM; Fiorenza M; Larghi L; Alberti G; Millet GP; Girard O
    PLoS One; 2017; 12(2):e0171462. PubMed ID: 28199402
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Physiological, Perceptual, and Affective Responses to Six High-Intensity Interval Training Protocols.
    Follador L; Alves RC; Ferreira SDS; Buzzachera CF; Andrade VFDS; Garcia EDSA; Osiecki R; Barbosa SC; de Oliveira LM; da Silva SG
    Percept Mot Skills; 2018 Apr; 125(2):329-350. PubMed ID: 29368530
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Combined effects of very short "all out" efforts during sprint and resistance training on physical and physiological adaptations after 2 weeks of training.
    Benítez-Flores S; Medeiros AR; Voltarelli FA; Iglesias-Soler E; Doma K; Simões HG; Rosa TS; Boullosa DA
    Eur J Appl Physiol; 2019 Jun; 119(6):1337-1351. PubMed ID: 30879186
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effects of dietary nitrate supplementation on the adaptations to sprint interval training in previously untrained males.
    Muggeridge DJ; Sculthorpe N; James PE; Easton C
    J Sci Med Sport; 2017 Jan; 20(1):92-97. PubMed ID: 27260004
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effects of recovery duration on physiological and perceptual responses of trained runners during four self-paced HIIT sessions.
    Schoenmakers PPJM; Reed KE
    J Sci Med Sport; 2019 Apr; 22(4):462-466. PubMed ID: 30297216
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Using Bodyweight as Resistance Can Be a Promising Avenue to Promote Interval Training: Enjoyment Comparisons to Treadmill-Based Protocols.
    Schaun GZ; Alberton CL
    Res Q Exerc Sport; 2022 Mar; 93(1):162-170. PubMed ID: 32960155
    [No Abstract]   [Full Text] [Related]  

  • 51. Effects of a 12-day maximal shuttle-run shock microcycle in hypoxia on soccer specific performance and oxidative stress.
    Gatterer H; Klarod K; Heinrich D; Schlemmer P; Dilitz S; Burtscher M
    Appl Physiol Nutr Metab; 2015 Aug; 40(8):842-5. PubMed ID: 26212372
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of three low-volume, high-intensity exercise conditions on affective valence.
    Haines M; Broom D; Gillibrand W; Stephenson J
    J Sports Sci; 2020 Jan; 38(2):121-129. PubMed ID: 31661663
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-intensity interval training programme for obese youth (HIP4YOUTH): A pilot feasibility study.
    Lee S; Spector J; Reilly S
    J Sports Sci; 2017 Sep; 35(18):1-5. PubMed ID: 27700228
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Postexercise cold-water immersion improves intermittent high-intensity exercise performance in normothermia.
    McCarthy A; Mulligan J; Egaña M
    Appl Physiol Nutr Metab; 2016 Nov; 41(11):1163-1170. PubMed ID: 27786541
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New Zealand Blackcurrant Extract Improves High-Intensity Intermittent Running.
    Perkins IC; Vine SA; Blacker SD; Willems ME
    Int J Sport Nutr Exerc Metab; 2015 Oct; 25(5):487-93. PubMed ID: 25812064
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Examining work-to-rest ratios to optimize upper body sprint interval training.
    La Monica MB; Fukuda DH; Starling-Smith TM; Clark NW; Morales J; Hoffman JR; Stout JR
    Respir Physiol Neurobiol; 2019 Apr; 262():12-19. PubMed ID: 30660860
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Music enhances performance and perceived enjoyment of sprint interval exercise.
    Stork MJ; Kwan MY; Gibala MJ; Martin Ginis KA
    Med Sci Sports Exerc; 2015 May; 47(5):1052-60. PubMed ID: 25202850
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simulated hypoxia does not further improve aerobic capacity during sprint interval training.
    Richardson AJ; Gibson OR
    J Sports Med Phys Fitness; 2015 Oct; 55(10):1099-106. PubMed ID: 25028984
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of Sprint Duration during Minimal Volume Exercise on Aerobic Capacity and Affect.
    Haines M; Broom D; Stephenson J; Gillibrand W
    Int J Sports Med; 2021 Apr; 42(4):357-364. PubMed ID: 33022736
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Similar perceptual responses to reduced exertion high intensity interval training (REHIT) in adults differing in cardiorespiratory fitness.
    Astorino TA; Clausen R; Marroquin J; Arthur B; Stiles K
    Physiol Behav; 2020 Jan; 213():112687. PubMed ID: 31622613
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.