These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28177799)

  • 41. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil.
    Lu K; Yang X; Gielen G; Bolan N; Ok YS; Niazi NK; Xu S; Yuan G; Chen X; Zhang X; Liu D; Song Z; Liu X; Wang H
    J Environ Manage; 2017 Jan; 186(Pt 2):285-292. PubMed ID: 27264699
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa).
    Sapre S; Gontia-Mishra I; Tiwari S
    Microbiol Res; 2018 Jan; 206():25-32. PubMed ID: 29146257
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress.
    Islam F; Yasmeen T; Ali Q; Ali S; Arif MS; Hussain S; Rizvi H
    Ecotoxicol Environ Saf; 2014 Jun; 104():285-93. PubMed ID: 24726941
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inorganic phosphorus fertilizer ameliorates maize growth by reducing metal uptake, improving soil enzyme activity and microbial community structure.
    Wu W; Wu J; Liu X; Chen X; Wu Y; Yu S
    Ecotoxicol Environ Saf; 2017 Sep; 143():322-329. PubMed ID: 28578263
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1.
    Rizvi A; Khan MS
    Chemosphere; 2017 Oct; 185():942-952. PubMed ID: 28747006
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phytoremediation potential of some agricultural plants on heavy metal contaminated mine waste soils, salem district, tamilnadu.
    Padmapriya S; Murugan N; Ragavendran C; Thangabalu R; Natarajan D
    Int J Phytoremediation; 2016; 18(3):288-94. PubMed ID: 26366709
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metal accumulation and growth response in Vigna radiata L. inoculated with chromate tolerant rhizobacteria and grown on tannery sludge amended soil.
    Singh NK; Rai UN; Tewari A; Singh M
    Bull Environ Contam Toxicol; 2010 Jan; 84(1):118-24. PubMed ID: 19784534
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The use of vetiver for remediation of heavy metal soil contamination.
    Antiochia R; Campanella L; Ghezzi P; Movassaghi K
    Anal Bioanal Chem; 2007 Jun; 388(4):947-56. PubMed ID: 17468861
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Applying carbon dioxide, plant growth-promoting rhizobacterium and EDTA can enhance the phytoremediation efficiency of ryegrass in a soil polluted with zinc, arsenic, cadmium and lead.
    Guo J; Feng R; Ding Y; Wang R
    J Environ Manage; 2014 Aug; 141():1-8. PubMed ID: 24762567
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress.
    Mitra S; Pramanik K; Ghosh PK; Soren T; Sarkar A; Dey RS; Pandey S; Maiti TK
    Microbiol Res; 2018 May; 210():12-25. PubMed ID: 29625654
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plant Growth-Promoting Rhizobacteria (PGPR) Assisted Bioremediation of Heavy Metal Toxicity.
    Gupta R; Khan F; Alqahtani FM; Hashem M; Ahmad F
    Appl Biochem Biotechnol; 2024 May; 196(5):2928-2956. PubMed ID: 37097400
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of efficient plant-growth-promoting bacteria isolated from Sulla coronaria resistant to cadmium and to other heavy metals.
    Chiboub M; Saadani O; Fatnassi IC; Abdelkrim S; Abid G; Jebara M; Jebara SH
    C R Biol; 2016; 339(9-10):391-8. PubMed ID: 27498183
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7.
    Zahoor M; Irshad M; Rahman H; Qasim M; Afridi SG; Qadir M; Hussain A
    Ecotoxicol Environ Saf; 2017 Aug; 142():139-149. PubMed ID: 28407499
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of silkworm excrement and mushroom dreg for the remediation of multiple heavy metal/metalloid contaminated soil using pakchoi.
    Wang R; Guo J; Xu Y; Ding Y; Shen Y; Zheng X; Feng R
    Ecotoxicol Environ Saf; 2016 Feb; 124():239-247. PubMed ID: 26546906
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil.
    Zhang G; Guo X; Zhao Z; He Q; Wang S; Zhu Y; Yan Y; Liu X; Sun K; Zhao Y; Qian T
    Environ Pollut; 2016 Nov; 218():513-522. PubMed ID: 27460900
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: the impact of a rhizobial inoculum.
    Xu L; Teng Y; Li ZG; Norton JM; Luo YM
    Sci Total Environ; 2010 Feb; 408(5):1007-13. PubMed ID: 19995667
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Non-destructive soil amendment application techniques on heavy metal-contaminated grassland: Success and long-term immobilising efficiency.
    Friesl-Hanl W; Platzer K; Riesing J; Horak O; Waldner G; Watzinger A; Gerzabek MH
    J Environ Manage; 2017 Jan; 186(Pt 2):167-174. PubMed ID: 27594691
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria--effects on phytoremediation strategies.
    Marques AP; Moreira H; Franco AR; Rangel AO; Castro PM
    Chemosphere; 2013 Jun; 92(1):74-83. PubMed ID: 23582407
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Isolation and characterization of heavy-metal-mobilizing bacteria from contaminated soils and their potential in promoting Pb, Cu, and Cd accumulation by Coprinus comatus.
    Jing XB; He N; Zhang Y; Cao YR; Xu H
    Can J Microbiol; 2012 Jan; 58(1):45-53. PubMed ID: 22181009
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Augmentation with potential endophytes enhances phytostabilization of Cr in contaminated soil.
    Ahsan MT; Najam-Ul-Haq M; Saeed A; Mustafa T; Afzal M
    Environ Sci Pollut Res Int; 2018 Mar; 25(7):7021-7032. PubMed ID: 29273991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.