These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 28178190)
1. High Specific Selectivity and Membrane-Active Mechanism of Synthetic Cationic Hybrid Antimicrobial Peptides Based on the Peptide FV7. Tan T; Wu D; Li W; Zheng X; Li W; Shan A Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28178190 [TBL] [Abstract][Full Text] [Related]
2. Design of embedded-hybrid antimicrobial peptides with enhanced cell selectivity and anti-biofilm activity. Xu W; Zhu X; Tan T; Li W; Shan A PLoS One; 2014; 9(6):e98935. PubMed ID: 24945359 [TBL] [Abstract][Full Text] [Related]
3. Design and characterization of novel hybrid antimicrobial peptides based on cecropin A, LL-37 and magainin II. Fox MA; Thwaite JE; Ulaeto DO; Atkins TP; Atkins HS Peptides; 2012 Feb; 33(2):197-205. PubMed ID: 22289499 [TBL] [Abstract][Full Text] [Related]
4. LL-37-derived short antimicrobial peptide KR-12-a5 and its d-amino acid substituted analogs with cell selectivity, anti-biofilm activity, synergistic effect with conventional antibiotics, and anti-inflammatory activity. Kim EY; Rajasekaran G; Shin SY Eur J Med Chem; 2017 Aug; 136():428-441. PubMed ID: 28525841 [TBL] [Abstract][Full Text] [Related]
5. High specific selectivity and Membrane-Active Mechanism of the synthetic centrosymmetric α-helical peptides with Gly-Gly pairs. Wang J; Chou S; Xu L; Zhu X; Dong N; Shan A; Chen Z Sci Rep; 2015 Nov; 5():15963. PubMed ID: 26530005 [TBL] [Abstract][Full Text] [Related]
7. Characterization of bactericidal efficiency, cell selectivity, and mechanism of short interspecific hybrid peptides. Dong N; Li XR; Xu XY; Lv YF; Li ZY; Shan AS; Wang JL Amino Acids; 2018 Apr; 50(3-4):453-468. PubMed ID: 29282543 [TBL] [Abstract][Full Text] [Related]
8. Antimicrobial and antibiofilm activity of LL-37 and its truncated variants against Burkholderia pseudomallei. Kanthawong S; Bolscher JG; Veerman EC; van Marle J; de Soet HJ; Nazmi K; Wongratanacheewin S; Taweechaisupapong S Int J Antimicrob Agents; 2012 Jan; 39(1):39-44. PubMed ID: 22005071 [TBL] [Abstract][Full Text] [Related]
9. High-quality 3D structures shine light on antibacterial, anti-biofilm and antiviral activities of human cathelicidin LL-37 and its fragments. Wang G; Mishra B; Epand RF; Epand RM Biochim Biophys Acta; 2014 Sep; 1838(9):2160-72. PubMed ID: 24463069 [TBL] [Abstract][Full Text] [Related]
10. Structure-antibacterial, antitumor and hemolytic activity relationships of cecropin A-magainin 2 and cecropin A-melittin hybrid peptides. Shin SY; Kang JH; Hahm KS J Pept Res; 1999 Jan; 53(1):82-90. PubMed ID: 10195445 [TBL] [Abstract][Full Text] [Related]
11. Effects of the hinge region of cecropin A(1-8)-magainin 2(1-12), a synthetic antimicrobial peptide, on liposomes, bacterial and tumor cells. Shin SY; Kang JH; Jang SY; Kim Y; Kim KL; Hahm KS Biochim Biophys Acta; 2000 Feb; 1463(2):209-18. PubMed ID: 10675500 [TBL] [Abstract][Full Text] [Related]
12. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Han HM; Gopal R; Park Y Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121 [TBL] [Abstract][Full Text] [Related]
13. Expression in Escherichia coli of novel recombinant hybrid antimicrobial peptide AL32-P113 with enhanced antimicrobial activity in vitro. Wanmakok M; Orrapin S; Intorasoot A; Intorasoot S Gene; 2018 Sep; 671():1-9. PubMed ID: 29859288 [TBL] [Abstract][Full Text] [Related]
14. LL-37-derived membrane-active FK-13 analogs possessing cell selectivity, anti-biofilm activity and synergy with chloramphenicol and anti-inflammatory activity. Rajasekaran G; Kim EY; Shin SY Biochim Biophys Acta Biomembr; 2017 May; 1859(5):722-733. PubMed ID: 28161291 [TBL] [Abstract][Full Text] [Related]
15. Functional and Toxicological Evaluation of MAA-41: A Novel Rationally Designed Antimicrobial Peptide Using Hybridization and Modification Methods from LL-37 and BMAP-28. Masadeh M; Ayyad A; Haddad R; Alsaggar M; Alzoubi K; Alrabadi N Curr Pharm Des; 2022; 28(26):2177-2188. PubMed ID: 35792128 [TBL] [Abstract][Full Text] [Related]
16. Antimicrobial properties and membrane-active mechanism of a potential α-helical antimicrobial derived from cathelicidin PMAP-36. Lv Y; Wang J; Gao H; Wang Z; Dong N; Ma Q; Shan A PLoS One; 2014; 9(1):e86364. PubMed ID: 24466055 [TBL] [Abstract][Full Text] [Related]
17. Antibacterial, anti-biofilm and in vivo activities of the antimicrobial peptides P5 and P6.2. Martínez M; Polizzotto A; Flores N; Semorile L; Maffía PC Microb Pathog; 2020 Feb; 139():103886. PubMed ID: 31778756 [TBL] [Abstract][Full Text] [Related]
18. Design and synthesis of new N-terminal fatty acid modified-antimicrobial peptide analogues with potent in vitro biological activity. Zhong C; Liu T; Gou S; He Y; Zhu N; Zhu Y; Wang L; Liu H; Zhang Y; Yao J; Ni J Eur J Med Chem; 2019 Nov; 182():111636. PubMed ID: 31466017 [TBL] [Abstract][Full Text] [Related]
19. Identification of peptides derived from the human antimicrobial peptide LL-37 active against biofilms formed by Pseudomonas aeruginosa using a library of truncated fragments. Nagant C; Pitts B; Nazmi K; Vandenbranden M; Bolscher JG; Stewart PS; Dehaye JP Antimicrob Agents Chemother; 2012 Nov; 56(11):5698-708. PubMed ID: 22908164 [TBL] [Abstract][Full Text] [Related]
20. Characterization of cell selectivity, physiological stability and endotoxin neutralization capabilities of α-helix-based peptide amphiphiles. Ma Z; Wei D; Yan P; Zhu X; Shan A; Bi Z Biomaterials; 2015 Jun; 52():517-30. PubMed ID: 25818457 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]