These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 28178238)

  • 61. Local synaptic integration enables ON-OFF asymmetric and layer-specific visual information processing in vGluT3 amacrine cell dendrites.
    Chen M; Lee S; Zhou ZJ
    Proc Natl Acad Sci U S A; 2017 Oct; 114(43):11518-11523. PubMed ID: 28973895
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Genetic targeting and physiological features of VGLUT3+ amacrine cells.
    Grimes WN; Seal RP; Oesch N; Edwards RH; Diamond JS
    Vis Neurosci; 2011 Sep; 28(5):381-92. PubMed ID: 21864449
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Specific wiring of distinct amacrine cells in the directionally selective retinal circuit permits independent coding of direction and size.
    Hoggarth A; McLaughlin AJ; Ronellenfitch K; Trenholm S; Vasandani R; Sethuramanujam S; Schwab D; Briggman KL; Awatramani GB
    Neuron; 2015 Apr; 86(1):276-91. PubMed ID: 25801705
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Vesicle depletion and synaptic depression at a mammalian ribbon synapse.
    Singer JH; Diamond JS
    J Neurophysiol; 2006 May; 95(5):3191-8. PubMed ID: 16452253
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Independent control of reciprocal and lateral inhibition at the axon terminal of retinal bipolar cells.
    Tanaka M; Tachibana M
    J Physiol; 2013 Aug; 591(16):3833-51. PubMed ID: 23690563
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Complex inhibitory microcircuitry regulates retinal signaling near visual threshold.
    Grimes WN; Zhang J; Tian H; Graydon CW; Hoon M; Rieke F; Diamond JS
    J Neurophysiol; 2015 Jul; 114(1):341-53. PubMed ID: 25972578
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Glycinergic synaptic transmission to bullfrog retinal bipolar cells is input-specific.
    Du JL; Yang XL
    Neuroscience; 2002; 113(4):779-84. PubMed ID: 12182885
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Loss of sensory input causes rapid structural changes of inhibitory neurons in adult mouse visual cortex.
    Keck T; Scheuss V; Jacobsen RI; Wierenga CJ; Eysel UT; Bonhoeffer T; Hübener M
    Neuron; 2011 Sep; 71(5):869-82. PubMed ID: 21903080
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Diverse inhibitory and excitatory mechanisms shape temporal tuning in transient OFF α ganglion cells in the rabbit retina.
    Murphy-Baum BL; Taylor WR
    J Physiol; 2018 Feb; 596(3):477-495. PubMed ID: 29222817
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Electrical synapses convey orientation selectivity in the mouse retina.
    Nath A; Schwartz GW
    Nat Commun; 2017 Dec; 8(1):2025. PubMed ID: 29229967
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Receptor and transmitter release properties set the time course of retinal inhibition.
    Eggers ED; Lukasiewicz PD
    J Neurosci; 2006 Sep; 26(37):9413-25. PubMed ID: 16971525
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Nonlinear Spatiotemporal Integration by Electrical and Chemical Synapses in the Retina.
    Kuo SP; Schwartz GW; Rieke F
    Neuron; 2016 Apr; 90(2):320-32. PubMed ID: 27068789
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Temporally Diverse Excitation Generates Direction-Selective Responses in ON- and OFF-Type Retinal Starburst Amacrine Cells.
    Fransen JW; Borghuis BG
    Cell Rep; 2017 Feb; 18(6):1356-1365. PubMed ID: 28178515
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Characterization of the glycinergic input to bipolar cells of the mouse retina.
    Ivanova E; Müller U; Wässle H
    Eur J Neurosci; 2006 Jan; 23(2):350-64. PubMed ID: 16420443
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Expression of vesicular glutamate transporter 1 in the mouse retina reveals temporal ordering in development of rod vs. cone and ON vs. OFF circuits.
    Sherry DM; Wang MM; Bates J; Frishman LJ
    J Comp Neurol; 2003 Oct; 465(4):480-98. PubMed ID: 12975811
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Neural interactions mediating the detection of motion in the retina of the tiger salamander.
    Werblin F; Maguire G; Lukasiewicz P; Eliasof S; Wu SM
    Vis Neurosci; 1988; 1(3):317-29. PubMed ID: 2856477
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Crossover inhibition in the retina: circuitry that compensates for nonlinear rectifying synaptic transmission.
    Molnar A; Hsueh HA; Roska B; Werblin FS
    J Comput Neurosci; 2009 Dec; 27(3):569-90. PubMed ID: 19636690
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Spike-dependent GABA inputs to bipolar cell axon terminals contribute to lateral inhibition of retinal ganglion cells.
    Shields CR; Lukasiewicz PD
    J Neurophysiol; 2003 May; 89(5):2449-58. PubMed ID: 12611993
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Dopamine D1 receptor activation contributes to light-adapted changes in retinal inhibition to rod bipolar cells.
    Flood MD; Moore-Dotson JM; Eggers ED
    J Neurophysiol; 2018 Aug; 120(2):867-879. PubMed ID: 29847232
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Differential encoding of spatial information among retinal on cone bipolar cells.
    Purgert RJ; Lukasiewicz PD
    J Neurophysiol; 2015 Sep; 114(3):1757-72. PubMed ID: 26203104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.