These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 28178331)

  • 1. Large-scale bioactivity analysis of the small-molecule assayed proteome.
    Backman TW; Evans DS; Girke T
    PLoS One; 2017; 12(2):e0171413. PubMed ID: 28178331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Small-Molecule Reactivity Identifies Promiscuous Bioactive Compounds.
    Matlock MK; Hughes TB; Dahlin JL; Swamidass SJ
    J Chem Inf Model; 2018 Aug; 58(8):1483-1500. PubMed ID: 29990427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hit Dexter 2.0: Machine-Learning Models for the Prediction of Frequent Hitters.
    Stork C; Chen Y; Šícho M; Kirchmair J
    J Chem Inf Model; 2019 Mar; 59(3):1030-1043. PubMed ID: 30624935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing Molecular Promiscuity Evaluation Through Assay Profiles.
    Avram S; Curpan R; Bora A; Neanu C; Halip L
    Pharm Res; 2018 Oct; 35(11):240. PubMed ID: 30338400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Computational Approach to Predict Off-Target Interactions for Small Molecules.
    Rao MS; Gupta R; Liguori MJ; Hu M; Huang X; Mantena SR; Mittelstadt SW; Blomme EAG; Van Vleet TR
    Front Big Data; 2019; 2():25. PubMed ID: 33693348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polypharmacology directed compound data mining: identification of promiscuous chemotypes with different activity profiles and comparison to approved drugs.
    Hu Y; Bajorath J
    J Chem Inf Model; 2010 Dec; 50(12):2112-8. PubMed ID: 21070069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining the Degree of Promiscuity of Extensively Assayed Compounds.
    Jasial S; Hu Y; Bajorath J
    PLoS One; 2016; 11(4):e0153873. PubMed ID: 27082988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Identification of Target by Expression Proteomics (FITExP) reveals protein targets and highlights mechanisms of action of small molecule drugs.
    Chernobrovkin A; Marin-Vicente C; Visa N; Zubarev RA
    Sci Rep; 2015 Jun; 5():11176. PubMed ID: 26052917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repurposing FDA-approved drugs for anti-aging therapies.
    Snell TW; Johnston RK; Srinivasan B; Zhou H; Gao M; Skolnick J
    Biogerontology; 2016 Nov; 17(5-6):907-920. PubMed ID: 27484416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why are membrane targets discovered by phenotypic screens and genome sequencing in Mycobacterium tuberculosis?
    Goldman RC
    Tuberculosis (Edinb); 2013 Nov; 93(6):569-88. PubMed ID: 24119636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of small molecule aggregators from large compound libraries by support vector machines.
    Rao H; Li Z; Li X; Ma X; Ung C; Li H; Liu X; Chen Y
    J Comput Chem; 2010 Mar; 31(4):752-63. PubMed ID: 19569201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A survey of across-target bioactivity results of small molecules in PubChem.
    Han L; Wang Y; Bryant SH
    Bioinformatics; 2009 Sep; 25(17):2251-5. PubMed ID: 19549631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic Proxies to Compensate for Biases in Drug Discovery Methods.
    Ekins S; Litterman NK; Lipinski CA; Bunin BA
    Pharm Res; 2016 Jan; 33(1):194-205. PubMed ID: 26311555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Promiscuous Small Molecules from Biological Screening Assays Include Many Pan-Assay Interference Compounds but Also Candidates for Polypharmacology.
    Gilberg E; Jasial S; Stumpfe D; Dimova D; Bajorath J
    J Med Chem; 2016 Nov; 59(22):10285-10290. PubMed ID: 27809519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phantom PAINS: Problems with the Utility of Alerts for Pan-Assay INterference CompoundS.
    Capuzzi SJ; Muratov EN; Tropsha A
    J Chem Inf Model; 2017 Mar; 57(3):417-427. PubMed ID: 28165734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Discovery of Functional Small Molecule Ligands against Proteomic Targets through Library-Against-Library Screening.
    Wu CY; Wang DH; Wang X; Dixon SM; Meng L; Ahadi S; Enter DH; Chen CY; Kato J; Leon LJ; Ramirez LM; Maeda Y; Reis CF; Ribeiro B; Weems B; Kung HJ; Lam KS
    ACS Comb Sci; 2016 Jun; 18(6):320-9. PubMed ID: 27053324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity profile relationships between structurally similar promiscuous compounds.
    Hu Y; Bajorath J
    Eur J Med Chem; 2013 Nov; 69():393-8. PubMed ID: 24077530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PAIN(S) relievers for medicinal chemists: how computational methods can assist in hit evaluation.
    Stork C; Kirchmair J
    Future Med Chem; 2018 Jul; 10(13):1533-1535. PubMed ID: 29956552
    [No Abstract]   [Full Text] [Related]  

  • 19. Identification of new drug candidates against Borrelia burgdorferi using high-throughput screening.
    Pothineni VR; Wagh D; Babar MM; Inayathullah M; Solow-Cordero D; Kim KM; Samineni AV; Parekh MB; Tayebi L; Rajadas J
    Drug Des Devel Ther; 2016; 10():1307-22. PubMed ID: 27103785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cheminformatics approaches to analyze diversity in compound screening libraries.
    Akella LB; DeCaprio D
    Curr Opin Chem Biol; 2010 Jun; 14(3):325-30. PubMed ID: 20457001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.