BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 28178332)

  • 1. A hierarchical estimator development for estimation of tire-road friction coefficient.
    Zhang X; Göhlich D
    PLoS One; 2017; 12(2):e0171085. PubMed ID: 28178332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Procedure for Determining Tire-Road Friction Characteristics Using a Modification of the Magic Formula Based on Experimental Results.
    Cabrera JA; Castillo JJ; Pérez J; Velasco JM; Guerra AJ; Hernández P
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29562623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tire-road friction estimation and traction control strategy for motorized electric vehicle.
    Jin LQ; Ling M; Yue W
    PLoS One; 2017; 12(6):e0179526. PubMed ID: 28662053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-sensor Fusion Road Friction Coefficient Estimation During Steering with Lyapunov Method.
    Gao L; Xiong L; Lin X; Xia X; Liu W; Lu Y; Yu Z
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31487878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three Three-Axis IEPE Accelerometers on the Inner Liner of a Tire for Finding the Tire-Road Friction Potential Indicators.
    Niskanen A; Tuononen AJ
    Sensors (Basel); 2015 Aug; 15(8):19251-63. PubMed ID: 26251914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Strain-Based Method to Estimate Tire Parameters for Intelligent Tires under Complex Maneuvering Operations.
    Mendoza-Petit MF; Garcia-Pozuelo D; Diaz V; Olatunbosun O
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Kalman Filter Design and Analysis Method Considering Observability and Dominance Properties of Measurands Applied to Vehicle State Estimation.
    Ruggaber J; Brembeck J
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Strain-Based Method to Detect Tires' Loss of Grip and Estimate Lateral Friction Coefficient from Experimental Data by Fuzzy Logic for Intelligent Tire Development.
    Yunta J; Garcia-Pozuelo D; Diaz V; Olatunbosun O
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29415513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tire Slip
    Meléndez-Useros M; Jiménez-Salas M; Viadero-Monasterio F; Boada BL
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vehicle State Joint Estimation Based on Lateral Stiffness.
    Quan L; Chang R; Guo C; Li B
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Adaptive Unscented Kalman Filter for the Estimation of the Vehicle Velocity Components, Slip Angles, and Slip Ratios in Extreme Driving Manoeuvres.
    Alshawi A; De Pinto S; Stano P; van Aalst S; Praet K; Boulay E; Ivone D; Gruber P; Sorniotti A
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Sensor Fusion Method Based on an Integrated Neural Network and Kalman Filter for Vehicle Roll Angle Estimation.
    Vargas-Meléndez L; Boada BL; Boada MJ; Gauchía A; Díaz V
    Sensors (Basel); 2016 Aug; 16(9):. PubMed ID: 27589763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Robust Hierarchical Estimation Scheme for Vehicle State Based on Maximum Correntropy Square-Root Cubature Kalman Filter.
    Qi D; Feng J; Li Y; Wang L; Song B
    Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-Tire Distributed Optical Fiber (DOF) Sensor for the Load Assessment of Light Vehicles in Static Conditions.
    Fontaine M; Coiret A; Cesbron J; Baltazart V; Bétaille D
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation for Runway Friction Coefficient Based on Multi-Sensor Information Fusion and Model Correlation.
    Niu Y; Zhang S; Tian G; Zhu H; Zhou W
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32668618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical control of differential steering for four-in-wheel-motor electric vehicle.
    Tian J; Yang M
    PLoS One; 2023; 18(6):e0285485. PubMed ID: 37294741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pavement type and wear condition classification from tire cavity acoustic measurements with artificial neural networks.
    Masino J; Foitzik MJ; Frey M; Gauterin F
    J Acoust Soc Am; 2017 Jun; 141(6):4220. PubMed ID: 28618828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Novel Lateral Tire Force Sensors to Vehicle Parameter Estimation of Electric Vehicles.
    Nam K
    Sensors (Basel); 2015 Nov; 15(11):28385-401. PubMed ID: 26569246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of Longitudinal Force, Sideslip Angle and Yaw Rate for Four-Wheel Independent Actuated Autonomous Vehicles Based on PWA Tire Model.
    Sun X; Wang Y; Hu W
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Commentary: legal minimum tread depth for passenger car tires in the U.S.A.--a survey.
    Blythe W; Seguin DE
    Traffic Inj Prev; 2006 Jun; 7(2):107-10. PubMed ID: 16854703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.