These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 28178784)

  • 41. Biexciton Emission from Edges and Grain Boundaries of Triangular WS₂ Monolayers.
    Kim MS; Yun SJ; Lee Y; Seo C; Han GH; Kim KK; Lee YH; Kim J
    ACS Nano; 2016 Feb; 10(2):2399-405. PubMed ID: 26758415
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Defect Origin of Emission in CsCu
    Li R; Wang R; Yuan Y; Ding J; Cheng Y; Zhang Z; Huang W
    J Phys Chem Lett; 2021 Jan; 12(1):317-323. PubMed ID: 33351622
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biexciton Formation in Bilayer Tungsten Disulfide.
    He Z; Xu W; Zhou Y; Wang X; Sheng Y; Rong Y; Guo S; Zhang J; Smith JM; Warner JH
    ACS Nano; 2016 Feb; 10(2):2176-83. PubMed ID: 26761127
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photoluminescence quenching and charge transfer in artificial heterostacks of monolayer transition metal dichalcogenides and few-layer black phosphorus.
    Yuan J; Najmaei S; Zhang Z; Zhang J; Lei S; M Ajayan P; Yakobson BI; Lou J
    ACS Nano; 2015 Jan; 9(1):555-63. PubMed ID: 25569715
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Switchable, Tunable, and Directable Exciton Funneling in Periodically Wrinkled WS
    Lee J; Yun SJ; Seo C; Cho K; Kim TS; An GH; Kang K; Lee HS; Kim J
    Nano Lett; 2021 Jan; 21(1):43-50. PubMed ID: 33052049
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrical Characterization of Discrete Defects and Impact of Defect Density on Photoluminescence in Monolayer WS
    Rosenberger MR; Chuang HJ; McCreary KM; Li CH; Jonker BT
    ACS Nano; 2018 Feb; 12(2):1793-1800. PubMed ID: 29320162
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Revealing the nature of low-temperature photoluminescence peaks by laser treatment in van der Waals epitaxially grown WS
    Orsi Gordo V; Balanta MAG; Galvão Gobato Y; Covre FS; Galeti HVA; Iikawa F; Couto ODD; Qu F; Henini M; Hewak DW; Huang CC
    Nanoscale; 2018 Mar; 10(10):4807-4815. PubMed ID: 29469923
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Monolayer WS
    Yang W; Huang T; He J; Zhang S; Yang Y; Liu W; Ge X; Zhang R; Qiu M; Sang Y; Wang X; Zhou X; Li T; Liu C; Dai N; Chen X; Fan Z; Shen G
    ACS Nano; 2022 Jan; 16(1):597-603. PubMed ID: 34919386
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pressure-Driven Metallization in Hafnium Diselenide.
    Andrada-Chacón A; Morales-García Á; Salvadó MA; Pertierra P; Franco R; Garbarino G; Taravillo M; Barreda-Argüeso JA; González J; García Baonza V; Recio JM; Sánchez-Benítez J
    Inorg Chem; 2021 Feb; 60(3):1746-1754. PubMed ID: 33449624
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The optical response of monolayer, few-layer and bulk tungsten disulfide.
    Molas MR; Nogajewski K; Slobodeniuk AO; Binder J; Bartos M; Potemski M
    Nanoscale; 2017 Sep; 9(35):13128-13141. PubMed ID: 28849844
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electroluminescence Dynamics across Grain Boundary Regions of Monolayer Tungsten Disulfide.
    Rong Y; Sheng Y; Pacios M; Wang X; He Z; Bhaskaran H; Warner JH
    ACS Nano; 2016 Jan; 10(1):1093-100. PubMed ID: 26636982
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Layer-dependent optical conductivity in atomic thin WS₂ by reflection contrast spectroscopy.
    Nayak PK; Yeh CH; Chen YC; Chiu PW
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16020-6. PubMed ID: 25153193
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Strain Release Induced Novel Fluorescence Variation in CVD-Grown Monolayer WS
    Feng S; Yang R; Jia Z; Xiang J; Wen F; Mu C; Nie A; Zhao Z; Xu B; Tao C; Tian Y; Liu Z
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34071-34077. PubMed ID: 28902488
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Strong Substrate Strain Effects in Multilayered WS
    Oliva R; Wozniak T; Faria PE; Dybala F; Kopaczek J; Fabian J; Scharoch P; Kudrawiec R
    ACS Appl Mater Interfaces; 2022 May; 14(17):19857-19868. PubMed ID: 35442641
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides.
    Zeng H; Cui X
    Chem Soc Rev; 2015 May; 44(9):2629-42. PubMed ID: 25897845
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CVD synthesis of Mo((1-x))W(x)S2 and MoS(2(1-x))Se(2x) alloy monolayers aimed at tuning the bandgap of molybdenum disulfide.
    Zhang W; Li X; Jiang T; Song J; Lin Y; Zhu L; Xu X
    Nanoscale; 2015 Aug; 7(32):13554-60. PubMed ID: 26204564
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High Pressure Vibrational Properties of WS2 Nanotubes.
    O'Neal KR; Cherian JG; Zak A; Tenne R; Liu Z; Musfeldt JL
    Nano Lett; 2016 Feb; 16(2):993-9. PubMed ID: 26675342
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Engineering Optical and Electronic Properties of WS2 by Varying the Number of Layers.
    Kim HC; Kim H; Lee JU; Lee HB; Choi DH; Lee JH; Lee WH; Jhang SH; Park BH; Cheong H; Lee SW; Chung HJ
    ACS Nano; 2015 Jul; 9(7):6854-60. PubMed ID: 26143940
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of curvature strain and Van der Waals force on the inter-layer vibration mode of WS2 nanotubes: A confocal micro-Raman spectroscopic study.
    Wang XH; Zheng CC; Ning JQ
    Sci Rep; 2016 Sep; 6():33091. PubMed ID: 27620879
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Composition-dependent Raman modes of Mo(1-x)W(x)S2 monolayer alloys.
    Chen Y; Dumcenco DO; Zhu Y; Zhang X; Mao N; Feng Q; Zhang M; Zhang J; Tan PH; Huang YS; Xie L
    Nanoscale; 2014 Mar; 6(5):2833-9. PubMed ID: 24469100
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.