These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 2817903)
1. Aluminum-adenine nucleotides as alternate substrates for creatine kinase. Furumo NC; Viola RE Arch Biochem Biophys; 1989 Nov; 275(1):33-9. PubMed ID: 2817903 [TBL] [Abstract][Full Text] [Related]
2. 31P NMR of enzyme-bound substrates of rabbit muscle creatine kinase. Equilibrium constants, interconversion rates, and NMR parameters of enzyme-bound complexes. Nageswara Rao BD; Cohn M J Biol Chem; 1981 Feb; 256(4):1716-21. PubMed ID: 7462219 [TBL] [Abstract][Full Text] [Related]
3. The alpha beta-methylene analogues of ADP and ATP act as substrates for creatine kinase. delta G0 for this reaction and for the hydrolysis of the alpha beta-methylene analogue of ATP. Milner-White EJ; Rycroft DS Eur J Biochem; 1983 Jun; 133(1):169-72. PubMed ID: 6852021 [TBL] [Abstract][Full Text] [Related]
5. Combination of 31P-NMR magnetization transfer and radioisotope exchange methods for assessment of an enzyme reaction mechanism: rate-determining steps of the creatine kinase reaction. Kupriyanov VV; Balaban RS; Lyulina NV; Steinschneider AYa ; Saks VA Biochim Biophys Acta; 1990 Dec; 1020(3):290-304. PubMed ID: 2248962 [TBL] [Abstract][Full Text] [Related]
6. [Affinity modification of creatine kinase from rabbit skeletal muscle by 2',3'-dialdehyde derivatives of ADP and ATP]. Nevinskiĭ GA; Gazariants MG; Mkrtchian ZS Bioorg Khim; 1983 Apr; 9(4):487-95. PubMed ID: 6679775 [TBL] [Abstract][Full Text] [Related]
7. Structural changes of mitochondrial creatine kinase upon binding of ADP, ATP, or Pi, observed by reaction-induced infrared difference spectra. Granjon T; Vacheron MJ; Vial C; Buchet R Biochemistry; 2001 Mar; 40(9):2988-94. PubMed ID: 11258911 [TBL] [Abstract][Full Text] [Related]
8. Direct determination of creatine kinase equilibrium constants with creatine or cyclocreatine substrate. LoPresti P; Cohn M Biochim Biophys Acta; 1989 Oct; 998(3):317-20. PubMed ID: 2804134 [TBL] [Abstract][Full Text] [Related]
9. Structure of metal x nucleotide complex in the creatine kinase reaction. A study with diastereomeric phosphorothioate analogs of adenosine di- and triphosphate. Burgers PM; Eckstein F J Biol Chem; 1980 Sep; 255(17):8229-33. PubMed ID: 6893324 [TBL] [Abstract][Full Text] [Related]
10. Magnetic resonance studies of specificity in binding and catalysis of phosphotransferases. Cohn M Ciba Found Symp; 1975; (31):87-104. PubMed ID: 168046 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of ATP to ADP beta-phosphoryl conversion in contracting skeletal muscle by in vivo 31P NMR magnetization transfer. Le Rumeur E; Le Tallec N; Kernec F; de Certaines JD NMR Biomed; 1997 Apr; 10(2):67-72. PubMed ID: 9267863 [TBL] [Abstract][Full Text] [Related]
12. Binding of adenosine 5'-diphosphate to creatine kinase. An investigation using intermolecular nuclear Overhauser effect measurements. James TL Biochemistry; 1976 Oct; 15(21):4724-30. PubMed ID: 974086 [TBL] [Abstract][Full Text] [Related]
13. In vitro determination of creatine kinase substrate fluxes using 31P-nuclear magnetic resonance. Conrad A; Gruwel ML; Soboll S Biochim Biophys Acta; 1995 Jan; 1243(1):117-23. PubMed ID: 7827099 [TBL] [Abstract][Full Text] [Related]
14. Magnetic resonance study of the three-dimensional structure of creatine kinase-substrate complexes. Implications for substrate specificity and catalytic mechanism. McLaughlin AC; Leigh JS; Cohn M J Biol Chem; 1976 May; 251(9):2777-87. PubMed ID: 177421 [TBL] [Abstract][Full Text] [Related]
15. Evidence for an associative mechanism in the phosphoryl transfer step catalyzed by rabbit muscle creatine kinase. Lowe G; Sproat BS J Biol Chem; 1980 May; 255(9):3944-51. PubMed ID: 7372661 [TBL] [Abstract][Full Text] [Related]
16. KINETIC STUDIES OF THE REVERSE REACTION CATALYSED BY ADENOSINE TRIPHOSPHATE-CREATINE PHOSPHOTRANSFERASE. THE INHIBITION BY MAGNESIUM IONS AND ADENOSINE DIPHOSPHATE. MORRISON JF; O'SULLIVAN WJ Biochem J; 1965 Jan; 94(1):221-35. PubMed ID: 14342234 [TBL] [Abstract][Full Text] [Related]
17. 31P NMR studies of the arginine kinase reaction. Equilibrium constants and exchange rates at stoichiometric enzyme concentration. Rao BD; Buttlaire DH; Cohn M J Biol Chem; 1976 Nov; 251(22):6981-6. PubMed ID: 186451 [TBL] [Abstract][Full Text] [Related]
18. Identification of a partially rate-determining step in the catalytic mechanism of cAMP-dependent protein kinase: a transient kinetic study using stopped-flow fluorescence spectroscopy. Lew J; Taylor SS; Adams JA Biochemistry; 1997 Jun; 36(22):6717-24. PubMed ID: 9184152 [TBL] [Abstract][Full Text] [Related]
19. ADP-binding and ATP-binding sites in native and proteinase-K-digested creatine kinase, probed by reaction-induced difference infrared spectroscopy. Raimbault C; Clottes E; Leydier C; Vial C; Buchet R Eur J Biochem; 1997 Aug; 247(3):1197-208. PubMed ID: 9288948 [TBL] [Abstract][Full Text] [Related]
20. A second magnesium ion is critical for ATP binding in the kinase domain of the oncoprotein v-Fps. Saylor P; Wang C; Hirai TJ; Adams JA Biochemistry; 1998 Sep; 37(36):12624-30. PubMed ID: 9730835 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]