BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

515 related articles for article (PubMed ID: 28179120)

  • 1. Novel therapeutic approaches for disease-modification of epileptogenesis for curing epilepsy.
    Clossen BL; Reddy DS
    Biochim Biophys Acta Mol Basis Dis; 2017 Jun; 1863(6):1519-1538. PubMed ID: 28179120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Insight into Molecular Mechanisms and Novel Therapeutic Approaches in Epileptogenesis.
    Singh S; Singh TG; Rehni AK
    CNS Neurol Disord Drug Targets; 2020; 19(10):750-779. PubMed ID: 32914725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of hormones and neurosteroids in epileptogenesis.
    Reddy DS
    Front Cell Neurosci; 2013; 7():115. PubMed ID: 23914154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic interventions for epileptogenesis: A new frontier for curing epilepsy.
    Younus I; Reddy DS
    Pharmacol Ther; 2017 Sep; 177():108-122. PubMed ID: 28279785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions of astrocytes to epileptogenesis following status epilepticus: opportunities for preventive therapy?
    Gibbons MB; Smeal RM; Takahashi DK; Vargas JR; Wilcox KS
    Neurochem Int; 2013 Dec; 63(7):660-9. PubMed ID: 23266599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An insight into crosstalk among multiple signaling pathways contributing to epileptogenesis.
    Gautam V; Rawat K; Sandhu A; Kumari P; Singh N; Saha L
    Eur J Pharmacol; 2021 Nov; 910():174469. PubMed ID: 34478688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alteration of epileptogenesis genes.
    Brooks-Kayal AR; Raol YH; Russek SJ
    Neurotherapeutics; 2009 Apr; 6(2):312-8. PubMed ID: 19332325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disease modification in partial epilepsy.
    Walker MC; White HS; Sander JW
    Brain; 2002 Sep; 125(Pt 9):1937-50. PubMed ID: 12183340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Animal models of epilepsy for the development of antiepileptogenic and disease-modifying drugs. A comparison of the pharmacology of kindling and post-status epilepticus models of temporal lobe epilepsy.
    Löscher W
    Epilepsy Res; 2002 Jun; 50(1-2):105-23. PubMed ID: 12151122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The holy grail of epilepsy prevention: Preclinical approaches to antiepileptogenic treatments.
    Löscher W
    Neuropharmacology; 2020 May; 167():107605. PubMed ID: 30980836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic Histone Deacetylation Inhibition Prevents the Development and Persistence of Temporal Lobe Epilepsy.
    Reddy SD; Clossen BL; Reddy DS
    J Pharmacol Exp Ther; 2018 Jan; 364(1):97-109. PubMed ID: 29101217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inflammation in epileptogenesis after traumatic brain injury.
    Webster KM; Sun M; Crack P; O'Brien TJ; Shultz SR; Semple BD
    J Neuroinflammation; 2017 Jan; 14(1):10. PubMed ID: 28086980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the Fyn-PKCδ signaling in SE-induced neuroinflammation and epileptogenesis in experimental models of temporal lobe epilepsy.
    Sharma S; Carlson S; Puttachary S; Sarkar S; Showman L; Putra M; Kanthasamy AG; Thippeswamy T
    Neurobiol Dis; 2018 Feb; 110():102-121. PubMed ID: 29197620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Commonalities and differences in extracellular levels of hippocampal acetylcholine and amino acid neurotransmitters during status epilepticus and subsequent epileptogenesis in two rat models of temporal lobe epilepsy.
    Meller S; Brandt C; Theilmann W; Klein J; Löscher W
    Brain Res; 2019 Jun; 1712():109-123. PubMed ID: 30703372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive astrocyte-driven epileptogenesis is induced by microglia initially activated following status epilepticus.
    Sano F; Shigetomi E; Shinozaki Y; Tsuzukiyama H; Saito K; Mikoshiba K; Horiuchi H; Cheung DL; Nabekura J; Sugita K; Aihara M; Koizumi S
    JCI Insight; 2021 May; 6(9):. PubMed ID: 33830944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective Activity of Novel Hydrophilic Synthetic Neurosteroids on Organophosphate Status Epilepticus-induced Chronic Epileptic Seizures, Non-Convulsive Discharges, High-Frequency Oscillations, and Electrographic Ictal Biomarkers.
    Ramakrishnan S; Singh T; Reddy DS
    J Pharmacol Exp Ther; 2024 Jan; 388(2):386-398. PubMed ID: 38050069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mammalian target of rapamycin (mTOR) inhibition as a potential antiepileptogenic therapy: From tuberous sclerosis to common acquired epilepsies.
    Wong M
    Epilepsia; 2010 Jan; 51(1):27-36. PubMed ID: 19817806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glial source of nitric oxide in epileptogenesis: A target for disease modification in epilepsy.
    Sharma S; Puttachary S; Thippeswamy T
    J Neurosci Res; 2019 Nov; 97(11):1363-1377. PubMed ID: 29230865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Commonalities in epileptogenic processes from different acute brain insults: Do they translate?
    Klein P; Dingledine R; Aronica E; Bernard C; Blümcke I; Boison D; Brodie MJ; Brooks-Kayal AR; Engel J; Forcelli PA; Hirsch LJ; Kaminski RM; Klitgaard H; Kobow K; Lowenstein DH; Pearl PL; Pitkänen A; Puhakka N; Rogawski MA; Schmidt D; Sillanpää M; Sloviter RS; Steinhäuser C; Vezzani A; Walker MC; Löscher W
    Epilepsia; 2018 Jan; 59(1):37-66. PubMed ID: 29247482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomarkers for epileptogenesis and its treatment.
    Engel J; Pitkänen A
    Neuropharmacology; 2020 May; 167():107735. PubMed ID: 31377200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.