BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 28179254)

  • 1. A mathematical model of the rat kidney: K
    Weinstein AM
    Am J Physiol Renal Physiol; 2017 Jun; 312(6):F925-F950. PubMed ID: 28179254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mathematical model of the rat kidney. II. Antidiuresis.
    Weinstein AM
    Am J Physiol Renal Physiol; 2020 Apr; 318(4):F936-F955. PubMed ID: 32088967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mathematical model of the rat kidney. IV. Whole kidney response to hyperkalemia.
    Weinstein AM
    Am J Physiol Renal Physiol; 2022 Feb; 322(2):F225-F244. PubMed ID: 35001663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium excretion during antinatriuresis: perspective from a distal nephron model.
    Weinstein AM
    Am J Physiol Renal Physiol; 2012 Mar; 302(6):F658-73. PubMed ID: 22114205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mathematical model of rat cortical collecting duct: determinants of the transtubular potassium gradient.
    Weinstein AM
    Am J Physiol Renal Physiol; 2001 Jun; 280(6):F1072-92. PubMed ID: 11352847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mathematical model of rat collecting duct. I. Flow effects on transport and urinary acidification.
    Weinstein AM
    Am J Physiol Renal Physiol; 2002 Dec; 283(6):F1237-51. PubMed ID: 12388378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the medullary collecting ducts in postobstructive diuresis.
    Sonnenberg H; Wilson DR
    J Clin Invest; 1976 Jun; 57(6):1564-74. PubMed ID: 932194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated control of Na transport along the nephron.
    Palmer LG; Schnermann J
    Clin J Am Soc Nephrol; 2015 Apr; 10(4):676-87. PubMed ID: 25098598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mathematical model of the urine concentrating mechanism in the rat renal medulla. II. Functional implications of three-dimensional architecture.
    Layton AT
    Am J Physiol Renal Physiol; 2011 Feb; 300(2):F372-84. PubMed ID: 21068088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mathematical model of O2 transport in the rat outer medulla. II. Impact of outer medullary architecture.
    Chen J; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2009 Aug; 297(2):F537-48. PubMed ID: 19403645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Urea handling by the medullary collecting duct of the rat kidney during hydropenia and urea infusion.
    Sonnenberg H; Wilson DR
    Pflugers Arch; 1981 May; 390(2):131-7. PubMed ID: 7195561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Urine concentrating mechanism: impact of vascular and tubular architecture and a proposed descending limb urea-Na+ cotransporter.
    Layton AT; Dantzler WH; Pannabecker TL
    Am J Physiol Renal Physiol; 2012 Mar; 302(5):F591-605. PubMed ID: 22088433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results.
    Layton AT
    Am J Physiol Renal Physiol; 2011 Feb; 300(2):F356-71. PubMed ID: 21068086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micropuncture study of water, electrolytes, and urea movements along the loops of henle in psammomys.
    de Rouffignac C; Morel F
    J Clin Invest; 1969 Mar; 48(3):474-86. PubMed ID: 5773086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal potassium handling in rats with subtotal nephrectomy: modeling and analysis.
    Layton AT; Edwards A; Vallon V
    Am J Physiol Renal Physiol; 2018 Apr; 314(4):F643-F657. PubMed ID: 29357444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered expression of Na transporters NHE-3, NaPi-II, Na-K-ATPase, BSC-1, and TSC in CRF rat kidneys.
    Kwon TH; Frøkiaer J; Fernández-Llama P; Maunsbach AB; Knepper MA; Nielsen S
    Am J Physiol; 1999 Aug; 277(2):F257-70. PubMed ID: 10444581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing plasma [K+] by intravenous potassium infusion reduces NCC phosphorylation and drives kaliuresis and natriuresis.
    Rengarajan S; Lee DH; Oh YT; Delpire E; Youn JH; McDonough AA
    Am J Physiol Renal Physiol; 2014 May; 306(9):F1059-68. PubMed ID: 24598799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of angiotensin II-mediated stimulation of sodium transporters in the nephron assessed by computational modeling.
    Edwards A; McDonough AA
    Am J Physiol Renal Physiol; 2019 Dec; 317(6):F1656-F1668. PubMed ID: 31657247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of medullary tonicity on urinary sodium excretion in the rat.
    Reineck HJ; Parma R
    J Clin Invest; 1982 Apr; 69(4):971-8. PubMed ID: 7076854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional characterization of drug-induced experimental papillary necrosis.
    Arruda JA; Sabatini S; Mehta PK; Sodhi B; Baranowski R
    Kidney Int; 1979 Mar; 15(3):264-75. PubMed ID: 513489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.