BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 28179457)

  • 1. Microtubule motors involved in nuclear movement during skeletal muscle differentiation.
    Gache V; Gomes ER; Cadot B
    Mol Biol Cell; 2017 Apr; 28(7):865-874. PubMed ID: 28179457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opposing microtubule motors drive robust nuclear dynamics in developing muscle cells.
    Wilson MH; Holzbaur EL
    J Cell Sci; 2012 Sep; 125(Pt 17):4158-69. PubMed ID: 22623723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods for Assessing Nuclear Rotation and Nuclear Positioning in Developing Skeletal Muscle Cells.
    Wilson MH; Bray MG; Holzbaur EL
    Methods Mol Biol; 2016; 1411():269-90. PubMed ID: 27147049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nesprins anchor kinesin-1 motors to the nucleus to drive nuclear distribution in muscle cells.
    Wilson MH; Holzbaur EL
    Development; 2015 Jan; 142(1):218-28. PubMed ID: 25516977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear alignment in myotubes requires centrosome proteins recruited by nesprin-1.
    Espigat-Georger A; Dyachuk V; Chemin C; Emorine L; Merdes A
    J Cell Sci; 2016 Nov; 129(22):4227-4237. PubMed ID: 27802164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function.
    Metzger T; Gache V; Xu M; Cadot B; Folker ES; Richardson BE; Gomes ER; Baylies MK
    Nature; 2012 Mar; 484(7392):120-4. PubMed ID: 22425998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reverse-engineering forces responsible for dynamic clustering and spreading of multiple nuclei in developing muscle cells.
    Manhart A; Azevedo M; Baylies M; Mogilner A
    Mol Biol Cell; 2020 Jul; 31(16):1802-1814. PubMed ID: 32129712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moving on to the cargo problem of microtubule-dependent motors in neurons.
    Terada S; Hirokawa N
    Curr Opin Neurobiol; 2000 Oct; 10(5):566-73. PubMed ID: 11084318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparing the way: fungal motors in microtubule organization.
    Steinberg G
    Trends Microbiol; 2007 Jan; 15(1):14-21. PubMed ID: 17129730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An In Vitro System to Measure the Positioning, Stiffness, and Rupture of the Nucleus in Skeletal Muscle.
    Roman W; Pimentel MR; Gomes ER
    Methods Mol Biol; 2018; 1840():283-293. PubMed ID: 30141051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microtubule-nucleus interactions in Dictyostelium discoideum mediated by central motor kinesins.
    Tikhonenko I; Nag DK; Robinson DN; Koonce MP
    Eukaryot Cell; 2009 May; 8(5):723-31. PubMed ID: 19286984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic evidence for a microtubule-destabilizing effect of conventional kinesin and analysis of its consequences for the control of nuclear distribution in Aspergillus nidulans.
    Requena N; Alberti-Segui C; Winzenburg E; Horn C; Schliwa M; Philippsen P; Liese R; Fischer R
    Mol Microbiol; 2001 Oct; 42(1):121-32. PubMed ID: 11679072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reorganization of microtubule nucleation during muscle differentiation.
    Bugnard E; Zaal KJ; Ralston E
    Cell Motil Cytoskeleton; 2005 Jan; 60(1):1-13. PubMed ID: 15532031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nesprins and opposing microtubule motors generate a point force that drives directional nuclear motion in migrating neurons.
    Wu YK; Umeshima H; Kurisu J; Kengaku M
    Development; 2018 Mar; 145(5):. PubMed ID: 29519888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microtubules and associated molecular motors in Neurospora crassa.
    Mouriño-Pérez RR; Riquelme M; Callejas-Negrete OA; Galván-Mendoza JI
    Mycologia; 2016; 108(3):515-27. PubMed ID: 26951369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different microtubule motors move early and late endocytic compartments.
    Loubéry S; Wilhelm C; Hurbain I; Neveu S; Louvard D; Coudrier E
    Traffic; 2008 Apr; 9(4):492-509. PubMed ID: 18194411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissect Kif5b in nuclear positioning during myogenesis: the light chain binding domain and the autoinhibitory peptide are both indispensable.
    Wang Z; Xue W; Li X; Lin R; Cui J; Huang JD
    Biochem Biophys Res Commun; 2013 Mar; 432(2):242-7. PubMed ID: 23402760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinesin-8 motors improve nuclear centering by promoting microtubule catastrophe.
    Glunčić M; Maghelli N; Krull A; Krstić V; Ramunno-Johnson D; Pavin N; Tolić IM
    Phys Rev Lett; 2015 Feb; 114(7):078103. PubMed ID: 25763975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstitution of muscle cell microtubule organization in vitro.
    Nadkarni AV; Heald R
    Cytoskeleton (Hoboken); 2021 Oct; 78(10-12):492-502. PubMed ID: 35666041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loop formation of microtubules during gliding at high density.
    Liu L; Tüzel E; Ross JL
    J Phys Condens Matter; 2011 Sep; 23(37):374104. PubMed ID: 21862840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.