BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 28179565)

  • 1. High-resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array.
    Kruss S; Salem DP; Vuković L; Lima B; Vander Ende E; Boyden ES; Strano MS
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1789-1794. PubMed ID: 28179565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring of dopamine release in single cell using ultrasensitive ITO microsensors modified with carbon nanotubes.
    Shi BX; Wang Y; Zhang K; Lam TL; Chan HL
    Biosens Bioelectron; 2011 Feb; 26(6):2917-21. PubMed ID: 21185713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical Imaging of Dopamine Release from Three-Dimensional-Cultured PC12 Cells Using Large-Scale Integration-Based Amperometric Sensors.
    Abe H; Ino K; Li CZ; Kanno Y; Inoue KY; Suda A; Kunikata R; Matsudaira M; Takahashi Y; Shiku H; Matsue T
    Anal Chem; 2015 Jun; 87(12):6364-70. PubMed ID: 25971414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(dimethylsiloxane) cross-linked carbon paste electrodes for microfluidic electrochemical sensing.
    Sameenoi Y; Mensack MM; Boonsong K; Ewing R; Dungchai W; Chailapakul O; Cropek DM; Henry CS
    Analyst; 2011 Aug; 136(15):3177-84. PubMed ID: 21698305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal resolution in electrochemical imaging on single PC12 cells using amperometry and voltammetry at microelectrode arrays.
    Zhang B; Heien ML; Santillo MF; Mellander L; Ewing AG
    Anal Chem; 2011 Jan; 83(2):571-7. PubMed ID: 21190375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-Infrared Imaging of Serotonin Release from Cells with Fluorescent Nanosensors.
    Dinarvand M; Neubert E; Meyer D; Selvaggio G; Mann FA; Erpenbeck L; Kruss S
    Nano Lett; 2019 Sep; 19(9):6604-6611. PubMed ID: 31418577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical biosensing of galactose based on carbon materials: graphene versus multi-walled carbon nanotubes.
    Dalkıran B; Erden PE; Kılıç E
    Anal Bioanal Chem; 2016 Jun; 408(16):4329-39. PubMed ID: 27074783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging of Monoamine Neurotransmitters with Fluorescent Nanoscale Sensors.
    Dinarvand M; Elizarova S; Daniel J; Kruss S
    Chempluschem; 2020 Jul; 85(7):1465-1480. PubMed ID: 32644301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-sensitive and wide-dynamic-range sensors based on dense arrays of carbon nanotube tips.
    Sun G; Huang Y; Zheng L; Zhan Z; Zhang Y; Pang JH; Wu T; Chen P
    Nanoscale; 2011 Nov; 3(11):4854-8. PubMed ID: 21997308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review.
    Barsan MM; Ghica ME; Brett CM
    Anal Chim Acta; 2015 Jun; 881():1-23. PubMed ID: 26041516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacing glycosylated carbon-nanotube-network devices with living cells to detect dynamic secretion of biomolecules.
    Sudibya HG; Ma J; Dong X; Ng S; Li LJ; Liu XW; Chen P
    Angew Chem Int Ed Engl; 2009; 48(15):2723-6. PubMed ID: 19263455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials.
    Suzuki I; Fukuda M; Shirakawa K; Jiko H; Gotoh M
    Biosens Bioelectron; 2013 Nov; 49():270-5. PubMed ID: 23774164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules.
    Tiwari JN; Vij V; Kemp KC; Kim KS
    ACS Nano; 2016 Jan; 10(1):46-80. PubMed ID: 26579616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A post-labeling strategy based on dye-induced peeling of the aptamer off single-walled carbon nanotubes for electrochemical aptasensing.
    Fu Y; Wang T; Bu L; Xie Q; Li P; Chen J; Yao S
    Chem Commun (Camb); 2011 Mar; 47(9):2637-9. PubMed ID: 21234471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overoxidized polypyrrole/multi-walled carbon nanotubes composite modified electrode for in vivo liquid chromatography-electrochemical detection of dopamine.
    Wen J; Zhou L; Jin L; Cao X; Ye BC
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Jul; 877(20-21):1793-8. PubMed ID: 19473890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-infrared nanoscopy with carbon-based nanoparticles for the exploration of the brain extracellular space.
    Paviolo C; Cognet L
    Neurobiol Dis; 2021 Jun; 153():105328. PubMed ID: 33713842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic biosensors based on SWCNT-conducting polymer electrodes.
    Le Goff A; Holzinger M; Cosnier S
    Analyst; 2011 Apr; 136(7):1279-87. PubMed ID: 21311804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A third generation glucose biosensor based on cellobiose dehydrogenase from Corynascus thermophilus and single-walled carbon nanotubes.
    Tasca F; Zafar MN; Harreither W; Nöll G; Ludwig R; Gorton L
    Analyst; 2011 May; 136(10):2033-6. PubMed ID: 20672160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of the electrochemical behavior and analytical applications of (bio)sensing platforms based on the use of multi-walled carbon nanotubes dispersed in different polymers.
    Primo EN; Gutierrez FA; Luque GL; Dalmasso PR; Gasnier A; Jalit Y; Moreno M; Bracamonte MV; Rubio ME; Pedano ML; Rodríguez MC; Ferreyra NF; Rubianes MD; Bollo S; Rivas GA
    Anal Chim Acta; 2013 Dec; 805():19-35. PubMed ID: 24296140
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.