These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 28179565)

  • 21. Electrochemical nanosensor for real-time direct imaging of nitric oxide in living brain.
    Jo A; Do H; Jhon GJ; Suh M; Lee Y
    Anal Chem; 2011 Nov; 83(21):8314-9. PubMed ID: 21942337
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amperometric detection of dopamine based on tyrosinase-SWNTs-Ppy composite electrode.
    Min K; Yoo YJ
    Talanta; 2009 Dec; 80(2):1007-11. PubMed ID: 19836587
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Real-time monitoring of NO release from single cells using carbon fiber microdisk electrodes modified with single-walled carbon nanotubes.
    Du F; Huang W; Shi Y; Wang Z; Cheng J
    Biosens Bioelectron; 2008 Nov; 24(3):415-21. PubMed ID: 18585028
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel membrane-based electrochemical sensor for real-time bio-applications.
    Alatraktchi FA; Bakmand T; Dimaki M; Svendsen WE
    Sensors (Basel); 2014 Nov; 14(11):22128-39. PubMed ID: 25421738
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon nanotubes for electrochemical biosensing.
    Rivas GA; Rubianes MD; Rodríguez MC; Ferreyra NF; Luque GL; Pedano ML; Miscoria SA; Parrado C
    Talanta; 2007 Dec; 74(3):291-307. PubMed ID: 18371643
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA sensing by field-effect transistors based on networks of carbon nanotubes.
    Gui EL; Li LJ; Zhang K; Xu Y; Dong X; Ho X; Lee PS; Kasim J; Shen ZX; Rogers JA; Mhaisalkar SG
    J Am Chem Soc; 2007 Nov; 129(46):14427-32. PubMed ID: 17973383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of 2-(3,4-dihydroxyphenyl)-1,3-dithialone self-assembled monolayer on gold electrode as a nanosensor for electrocatalytic determination of dopamine and uric acid.
    Mazloum-Ardakani M; Beitollahi H; Amini MK; Mirkhalaf F; Mirjalili BF; Akbari A
    Analyst; 2011 May; 136(9):1965-70. PubMed ID: 21387075
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrospun polyamide 6/poly(allylamine hydrochloride) nanofibers functionalized with carbon nanotubes for electrochemical detection of dopamine.
    Mercante LA; Pavinatto A; Iwaki LE; Scagion VP; Zucolotto V; Oliveira ON; Mattoso LH; Correa DS
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4784-90. PubMed ID: 25644325
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.
    Jain A; Homayoun A; Bannister CW; Yum K
    Biotechnol J; 2015 Mar; 10(3):447-59. PubMed ID: 25676253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tuning Selectivity of Fluorescent Carbon Nanotube-Based Neurotransmitter Sensors.
    Mann FA; Herrmann N; Meyer D; Kruss S
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28657584
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A very low potential electrochemical detection of L-cysteine based on a glassy carbon electrode modified with multi-walled carbon nanotubes/gold nanorods.
    Silva Fde A; da Silva MG; Lima PR; Meneghetti MR; Kubota LT; Goulart MO
    Biosens Bioelectron; 2013 Dec; 50():202-9. PubMed ID: 23859920
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanodiamonds on tetrahedral amorphous carbon significantly enhance dopamine detection and cell viability.
    Peltola E; Wester N; Holt KB; Johansson LS; Koskinen J; Myllymäki V; Laurila T
    Biosens Bioelectron; 2017 Feb; 88():273-282. PubMed ID: 27567263
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: A review.
    Cernat A; Tertiş M; Săndulescu R; Bedioui F; Cristea A; Cristea C
    Anal Chim Acta; 2015 Jul; 886():16-28. PubMed ID: 26320632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advances in electrospun carbon fiber-based electrochemical sensing platforms for bioanalytical applications.
    Mao X; Tian W; Hatton TA; Rutledge GC
    Anal Bioanal Chem; 2016 Feb; 408(5):1307-26. PubMed ID: 26650731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrochemical biosensors at the nanoscale.
    Wei D; Bailey MJ; Andrew P; Ryhänen T
    Lab Chip; 2009 Aug; 9(15):2123-31. PubMed ID: 19606287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Film electrode prepared from oppositely charged silicate submicroparticles and carbon nanoparticles for selective dopamine sensing.
    Celebanska A; Tomaszewska D; Lesniewski A; Opallo M
    Biosens Bioelectron; 2011 Jul; 26(11):4417-22. PubMed ID: 21641787
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode.
    Wang HS; Li TH; Jia WL; Xu HY
    Biosens Bioelectron; 2006 Dec; 22(5):664-9. PubMed ID: 16621509
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Voltammetric characterization of a fully integrated, patterned single walled carbon nanotube three-electrode system on a glass substrate.
    Jin JH; Kim JH; Lee JY; Min NK
    Analyst; 2011 May; 136(9):1910-5. PubMed ID: 21390372
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon nanotube nanoweb-bioelectrode for highly selective dopamine sensing.
    Zhao J; Zhang W; Sherrell P; Razal JM; Huang XF; Minett AI; Chen J
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):44-8. PubMed ID: 22148519
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dopamine-loaded liposome and its application in electrochemical DNA biosensor.
    Mahmoudi-Badiki T; Alipour E; Hamishehkar H; Golabi SM
    J Biomater Appl; 2016 Aug; 31(2):273-82. PubMed ID: 27194602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.