These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 28179570)

  • 1. Architected cellular ceramics with tailored stiffness via direct foam writing.
    Muth JT; Dixon PG; Woish L; Gibson LJ; Lewis JA
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1832-1837. PubMed ID: 28179570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchically Porous Ceramics via Direct Writing of Binary Colloidal Gel Foams.
    Román-Manso B; Muth J; Gibson LJ; Ruettinger W; Lewis JA
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8976-8984. PubMed ID: 33577284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical Porous Ceramics with Distinctive Microstructures by Emulsion-Based Direct Ink Writing.
    Liu Q; Zhai W
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32196-32205. PubMed ID: 35786835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing of sacrificial templates into hierarchical porous materials.
    Alison L; Menasce S; Bouville F; Tervoort E; Mattich I; Ofner A; Studart AR
    Sci Rep; 2019 Jan; 9(1):409. PubMed ID: 30674930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Ink Writing of Pickering Emulsions Generates Ultralight Conducting Polymer Foams with Hierarchical Structure and Multifunctionality.
    Huang H; Liao L; Lin Z; Pan D; Nuo Q; Wu TT; Jiang Y; Bai H
    Small; 2023 Aug; 19(35):e2301493. PubMed ID: 37093544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Embedded 3D Printing of Architected Ceramics via Microwave-Activated Polymerization.
    Román-Manso B; Weeks RD; Truby RL; Lewis JA
    Adv Mater; 2023 Apr; 35(15):e2209270. PubMed ID: 36658462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printing of Emulsions and Foams into Hierarchical Porous Ceramics.
    Minas C; Carnelli D; Tervoort E; Studart AR
    Adv Mater; 2016 Dec; 28(45):9993-9999. PubMed ID: 27677912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Architected Polymer Foams via Direct Bubble Writing.
    Visser CW; Amato DN; Mueller J; Lewis JA
    Adv Mater; 2019 Nov; 31(46):e1904668. PubMed ID: 31535777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D structure of lightweight, conductive cellulose nanofiber foam.
    Lee H; Kim S; Shin S; Hyun J
    Carbohydr Polym; 2021 Feb; 253():117238. PubMed ID: 33278994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printing of Lightweight Polyimide Honeycombs with the High Specific Strength and Temperature Resistance.
    Wang C; Ma S; Li D; Zhao J; Zhou H; Wang D; Zhou D; Gan T; Wang D; Liu C; Qu C; Chen C
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15690-15700. PubMed ID: 33689262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Giant Functional Properties in Porous Electroceramics through Additive Manufacturing of Capillary Suspensions.
    Menne D; Lemos da Silva L; Rotan M; Glaum J; Hinterstein M; Willenbacher N
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):3027-3037. PubMed ID: 34985253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable Energy Absorption Characteristics of Architected Honeycombs Enabled via Additive Manufacturing.
    Kumar S; Ubaid J; Abishera R; Schiffer A; Deshpande VS
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42549-42560. PubMed ID: 31566942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly compressible 3D periodic graphene aerogel microlattices.
    Zhu C; Han TY; Duoss EB; Golobic AM; Kuntz JD; Spadaccini CM; Worsley MA
    Nat Commun; 2015 Apr; 6():6962. PubMed ID: 25902277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking Rheology and Printability for Dense and Strong Ceramics by Direct Ink Writing.
    M'Barki A; Bocquet L; Stevenson A
    Sci Rep; 2017 Jul; 7(1):6017. PubMed ID: 28729671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring of Hierarchical Porous Freeze Foam Structures.
    Werner D; Maier J; Kaube N; Geske V; Behnisch T; Ahlhelm M; Moritz T; Michaelis A; Gude M
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive glass-reinforced bioceramic ink writing scaffolds: sintering, microstructure and mechanical behavior.
    Shao H; Yang X; He Y; Fu J; Liu L; Ma L; Zhang L; Yang G; Gao C; Gou Z
    Biofabrication; 2015 Sep; 7(3):035010. PubMed ID: 26355654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Architected Lattices with High Stiffness and Toughness via Multicore-Shell 3D Printing.
    Mueller J; Raney JR; Shea K; Lewis JA
    Adv Mater; 2018 Mar; 30(12):e1705001. PubMed ID: 29359825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Method for Preparing Hierarchical Al
    Wang C; Rong Y; Zhang B; Yang J
    Langmuir; 2022 Jan; 38(3):1141-1150. PubMed ID: 35016499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of a Ceramic Foam Catalyst Using Polymer Foam Scrap via the Replica Technique for Dry Reforming.
    Yeetsorn R; Tungkamani S; Maiket Y
    ACS Omega; 2022 Feb; 7(5):4202-4213. PubMed ID: 35155913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile Thermal-Solidifying Direct-Write Assembly towards Heat-Resistant 3D-Printed Ceramic Aerogels for Thermal Insulation.
    Wang L; Feng J; Luo Y; Jiang Y; Zhang G; Feng J
    Small Methods; 2022 May; 6(5):e2200045. PubMed ID: 35344287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.