These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 28179732)

  • 1. A microfabricated optically-pumped magnetic gradiometer.
    Sheng D; Perry AR; Krzyzewski SP; Geller S; Kitching J; Knappe S
    Appl Phys Lett; 2017 Jan; 110(3):031106. PubMed ID: 28179732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic field imaging with microfabricated optically-pumped magnetometers.
    Alem O; Mhaskar R; Jiménez-Martínez R; Sheng D; LeBlanc J; Trahms L; Sander T; Kitching J; Knappe S
    Opt Express; 2017 Apr; 25(7):7849-7858. PubMed ID: 28380903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of noise sources in a microfabricated single-beam zero-field optically-pumped magnetometer.
    Krzyzewski SP; Perry AR; Gerginov V; Knappe S
    J Appl Phys; 2019 Jul; 126(4):044504. PubMed ID: 31371835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening.
    Jiménez-Martínez R; Knappe S; Kitching J
    Rev Sci Instrum; 2014 Apr; 85(4):045124. PubMed ID: 24784676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noise reduction and signal-to-noise ratio improvement of atomic magnetometers with optical gradiometer configurations.
    Kamada K; Ito Y; Ichihara S; Mizutani N; Kobayashi T
    Opt Express; 2015 Mar; 23(5):6976-87. PubMed ID: 25836917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulsed operation of a miniature scalar optically pumped magnetometer.
    Gerginov V; Krzyzewski S; Knappe S
    J Opt Soc Am B; 2017; 34(7):1429-1434. PubMed ID: 29805196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scalar Magnetometry Below 100 fT/Hz
    Gerginov V; Pomponio M; Knappe S
    IEEE Sens J; 2020 Nov; 20(21):12684-12690. PubMed ID: 36275194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Note: An atomic self-sustaining magnetic gradiometer with a 1/τ uncertainty property based on Larmor precession.
    Fan BL; Wang SG; Xu C; Wang LJ
    Rev Sci Instrum; 2018 Feb; 89(2):026105. PubMed ID: 29495868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of effects of magnetic field gradient on atomic spin polarization and relaxation in optically pumped atomic magnetometers.
    Fang X; Wei K; Zhai Y; Zhao T; Chen X; Zhou M; Liu Y; Ma D; Xiao Z
    Opt Express; 2022 Jan; 30(3):3926-3940. PubMed ID: 35209641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-channel spin exchange relaxation free magnetometer towards two-dimensional vector magnetoencephalography.
    Zhang G; Huang S; Xu F; Hu Z; Lin Q
    Opt Express; 2019 Jan; 27(2):597-607. PubMed ID: 30696144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-Axis Dynamic Field Compensation of Optically Pumped Magnetometer Arrays for MEG.
    Robinson SE; Andonegui AB; Holroyd T; Hughes KJ; Alem O; Knappe S; Maydew T; Griesshammer A; Nugent A
    Neuroimage; 2022 Nov; 262():119559. PubMed ID: 35970471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compensation System for Biomagnetic Measurements with Optically Pumped Magnetometers inside a Magnetically Shielded Room.
    Jodko-Władzińska A; Wildner K; Pałko T; Władziński M
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32823964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-situ determination of spin polarization in a single-beam fiber-coupled spin-exchange-relaxation-free atomic magnetometer with differential detection.
    Ma Y; Qiao Z; Chen Y; Luo G; Yu M; Wang Y; Lu D; Zhao L; Yang P; Lin Q; Jiang Z
    Opt Express; 2023 Jan; 31(3):3743-3754. PubMed ID: 36785360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pulsed Optically Pumped Magnetometers: Addressing Dead Time and Bandwidth for the Unshielded Magnetorelaxometry of Magnetic Nanoparticles.
    Jaufenthaler A; Kornack T; Lebedev V; Limes ME; Körber R; Liebl M; Baumgarten D
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33572285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear spin gyroscope based on an atomic comagnetometer.
    Kornack TW; Ghosh RK; Romalis MV
    Phys Rev Lett; 2005 Dec; 95(23):230801. PubMed ID: 16384290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gradiometer Using Separated Diamond Quantum Magnetometers.
    Masuyama Y; Suzuki K; Hekizono A; Iwanami M; Hatano M; Iwasaki T; Ohshima T
    Sensors (Basel); 2021 Feb; 21(3):. PubMed ID: 33540515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum magnetic gradiometer with entangled twin light beams.
    Wu S; Bao G; Guo J; Chen J; Du W; Shi M; Yang P; Chen L; Zhang W
    Sci Adv; 2023 Apr; 9(15):eadg1760. PubMed ID: 37043567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A subfemtotesla multichannel atomic magnetometer.
    Kominis IK; Kornack TW; Allred JC; Romalis MV
    Nature; 2003 Apr; 422(6932):596-9. PubMed ID: 12686995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Helium-4 magnetometers for room-temperature biomedical imaging: toward collective operation and photon-noise limited sensitivity.
    Fourcault W; Romain R; Le Gal G; Bertrand F; Josselin V; Le Prado M; Labyt E; Palacios-Laloy A
    Opt Express; 2021 May; 29(10):14467-14475. PubMed ID: 33985169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Femtotesla atomic magnetometry in a microfabricated vapor cell.
    Griffith WC; Knappe S; Kitching J
    Opt Express; 2010 Dec; 18(26):27167-72. PubMed ID: 21196993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.