These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 28179882)

  • 1. Connecting Artificial Brains to Robots in a Comprehensive Simulation Framework: The Neurorobotics Platform.
    Falotico E; Vannucci L; Ambrosano A; Albanese U; Ulbrich S; Vasquez Tieck JC; Hinkel G; Kaiser J; Peric I; Denninger O; Cauli N; Kirtay M; Roennau A; Klinker G; Von Arnim A; Guyot L; Peppicelli D; Martínez-Cañada P; Ros E; Maier P; Weber S; Huber M; Plecher D; Röhrbein F; Deser S; Roitberg A; van der Smagt P; Dillman R; Levi P; Laschi C; Knoll AC; Gewaltig MO
    Front Neurorobot; 2017; 11():2. PubMed ID: 28179882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Neurorobotics Platform Robot Designer: Modeling Morphologies for Embodied Learning Experiments.
    Feldotto B; Morin FO; Knoll A
    Front Neurorobot; 2022; 16():856727. PubMed ID: 35548779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deploying and Optimizing Embodied Simulations of Large-Scale Spiking Neural Networks on HPC Infrastructure.
    Feldotto B; Eppler JM; Jimenez-Romero C; Bignamini C; Gutierrez CE; Albanese U; Retamino E; Vorobev V; Zolfaghari V; Upton A; Sun Z; Yamaura H; Heidarinejad M; Klijn W; Morrison A; Cruz F; McMurtrie C; Knoll AC; Igarashi J; Yamazaki T; Doya K; Morin FO
    Front Neuroinform; 2022; 16():884180. PubMed ID: 35662903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalisation, decision making, and embodiment effects in mental rotation: A neurorobotic architecture tested with a humanoid robot.
    Seepanomwan K; Caligiore D; Cangelosi A; Baldassarre G
    Neural Netw; 2015 Dec; 72():31-47. PubMed ID: 26604095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Biomimetic Control Method Increases the Adaptability of a Humanoid Robot Acting in a Dynamic Environment.
    Capolei MC; Angelidis E; Falotico E; Lund HH; Tolu S
    Front Neurorobot; 2019; 13():70. PubMed ID: 31555117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Survey of Robotics Control Based on Learning-Inspired Spiking Neural Networks.
    Bing Z; Meschede C; Röhrbein F; Huang K; Knoll AC
    Front Neurorobot; 2018; 12():35. PubMed ID: 30034334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurorobotic reinforcement learning for domains with parametrical uncertainty.
    Amaya C; von Arnim A
    Front Neurorobot; 2023; 17():1239581. PubMed ID: 37965072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.
    Walter F; Röhrbein F; Knoll A
    Neural Netw; 2015 Dec; 72():152-67. PubMed ID: 26422422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ROS-Neuro: An Open-Source Platform for Neurorobotics.
    Tonin L; Beraldo G; Tortora S; Menegatti E
    Front Neurorobot; 2022; 16():886050. PubMed ID: 35619967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bridging Neuroscience and Robotics: Spiking Neural Networks in Action.
    Jones A; Gandhi V; Mahiddine AY; Huyck C
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nengo and Low-Power AI Hardware for Robust, Embedded Neurorobotics.
    DeWolf T; Jaworski P; Eliasmith C
    Front Neurorobot; 2020; 14():568359. PubMed ID: 33162886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reward-based learning for virtual neurorobotics through emotional speech processing.
    Jayet Bray LC; Ferneyhough GB; Barker ER; Thibeault CM; Harris FC
    Front Neurorobot; 2013; 7():8. PubMed ID: 23641213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain-Inspired Spiking Neural Network Controller for a Neurorobotic Whisker System.
    Antonietti A; Geminiani A; Negri E; D'Angelo E; Casellato C; Pedrocchi A
    Front Neurorobot; 2022; 16():817948. PubMed ID: 35770277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Integrated Neurorobotics Model of the Cerebellar-Basal Ganglia Circuitry.
    Pimentel JM; Moioli RC; De Araujo MFP; Vargas PA
    Int J Neural Syst; 2023 Nov; 33(11):2350059. PubMed ID: 37791495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SpikingLab: modelling agents controlled by Spiking Neural Networks in Netlogo.
    Jimenez-Romero C; Johnson J
    Neural Comput Appl; 2017; 28(Suppl 1):755-764. PubMed ID: 29213189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generating Pointing Motions for a Humanoid Robot by Combining Motor Primitives.
    Tieck JCV; Schnell T; Kaiser J; Mauch F; Roennau A; Dillmann R
    Front Neurorobot; 2019; 13():77. PubMed ID: 31619981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurorobotic Models of Neurological Disorders: A Mini Review.
    Pronin S; Wellacott L; Pimentel J; Moioli RC; Vargas PA
    Front Neurorobot; 2021; 15():634045. PubMed ID: 33828474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A neurorobotics approach to behaviour selection based on human activity recognition.
    Ranieri CM; Moioli RC; Vargas PA; Romero RAF
    Cogn Neurodyn; 2023 Aug; 17(4):1009-1028. PubMed ID: 37522044
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.