These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28179882)

  • 21. Embodied bidirectional simulation of a spiking cortico-basal ganglia-cerebellar-thalamic brain model and a mouse musculoskeletal body model distributed across computers including the supercomputer Fugaku.
    Kuniyoshi Y; Kuriyama R; Omura S; Gutierrez CE; Sun Z; Feldotto B; Albanese U; Knoll AC; Yamada T; Hirayama T; Morin FO; Igarashi J; Doya K; Yamazaki T
    Front Neurorobot; 2023; 17():1269848. PubMed ID: 37867618
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Learning-based control approaches for service robots on cloth manipulation and dressing assistance: a comprehensive review.
    Nocentini O; Kim J; Bashir ZM; Cavallo F
    J Neuroeng Rehabil; 2022 Nov; 19(1):117. PubMed ID: 36329473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interactive neurorobotics: Behavioral and neural dynamics of agent interactions.
    Leonardis EJ; Breston L; Lucero-Moore R; Sena L; Kohli R; Schuster L; Barton-Gluzman L; Quinn LK; Wiles J; Chiba AA
    Front Psychol; 2022; 13():897603. PubMed ID: 36059768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neurorobotics Workshop for High School Students Promotes Competence and Confidence in Computational Neuroscience.
    Harris CA; Guerri L; Mircic S; Reining Z; Amorim M; Jović Ð; Wallace W; DeBoer J; Gage GJ
    Front Neurorobot; 2020; 14():6. PubMed ID: 32116636
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Three Laws of Neurorobotics: A Review on What Neurorehabilitation Robots Should Do for Patients and Clinicians.
    Iosa M; Morone G; Cherubini A; Paolucci S
    J Med Biol Eng; 2016; 36():1-11. PubMed ID: 27069459
    [TBL] [Abstract][Full Text] [Related]  

  • 26. VOR Adaptation on a Humanoid iCub Robot Using a Spiking Cerebellar Model.
    Naveros F; Luque NR; Ros E; Arleo A
    IEEE Trans Cybern; 2019 Feb; ():. PubMed ID: 30835236
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Virtual Neurorobotics (VNR) to Accelerate Development of Plausible Neuromorphic Brain Architectures.
    Goodman PH; Buntha S; Zou Q; Dascalu SM
    Front Neurorobot; 2007; 1():1. PubMed ID: 18958272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automated patient-robot assignment for a robotic rehabilitation gym: a simplified simulation model.
    Miller BA; Adhikari B; Jiang C; Novak VD
    J Neuroeng Rehabil; 2022 Nov; 19(1):126. PubMed ID: 36384813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neuro4PD: An Initial Neurorobotics Model of Parkinson's Disease.
    Pimentel JM; Moioli RC; de Araujo MFP; Ranieri CM; Romero RAF; Broz F; Vargas PA
    Front Neurorobot; 2021; 15():640449. PubMed ID: 34276331
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SSVEP-based Experimental Procedure for Brain-Robot Interaction with Humanoid Robots.
    Zhao J; Li W; Mao X; Li M
    J Vis Exp; 2015 Nov; (105):. PubMed ID: 26650051
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A hybrid CPG-ZMP control system for stable walking of a simulated flexible spine humanoid robot.
    Or J
    Neural Netw; 2010 Apr; 23(3):452-60. PubMed ID: 20031370
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Running Large-Scale Simulations on the Neurorobotics Platform to Understand Vision - The Case of Visual Crowding.
    Bornet A; Kaiser J; Kroner A; Falotico E; Ambrosano A; Cantero K; Herzog MH; Francis G
    Front Neurorobot; 2019; 13():33. PubMed ID: 31191291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Navigation Path Based Universal Mobile Manipulator Integrated Controller (NUMMIC).
    Kim T; Kim M; Yang S; Kim D
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236469
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SofaGym: An Open Platform for Reinforcement Learning Based on Soft Robot Simulations.
    Schegg P; Ménager E; Khairallah E; Marchal D; Dequidt J; Preux P; Duriez C
    Soft Robot; 2023 Apr; 10(2):410-430. PubMed ID: 36476150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acceptability Study of A3-K3 Robotic Architecture for a Neurorobotics Painting.
    Tramonte S; Sorbello R; Guger C; Chella A
    Front Neurorobot; 2018; 12():81. PubMed ID: 30687057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of compositional and contextual communicable congruence in robots by using dynamic neural network models.
    Park G; Tani J
    Neural Netw; 2015 Dec; 72():109-22. PubMed ID: 26498195
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolving mobile robots in simulated and real environments.
    Miglino O; Lund HH; Nolfi S
    Artif Life; 1995; 2(4):417-34. PubMed ID: 8942055
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Learning Actions From Natural Language Instructions Using an ON-World Embodied Cognitive Architecture.
    Giorgi I; Cangelosi A; Masala GL
    Front Neurorobot; 2021; 15():626380. PubMed ID: 34054452
    [TBL] [Abstract][Full Text] [Related]  

  • 39. iSpike: a spiking neural interface for the iCub robot.
    Gamez D; Fidjeland AK; Lazdins E
    Bioinspir Biomim; 2012 Jun; 7(2):025008. PubMed ID: 22617339
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mobile service robots for the operating room wing: balancing cost and performance by optimizing robotic fleet size and composition.
    Bernhard L; Amalanesan AF; Baumann O; Rothmeyer F; Hafner Y; Berlet M; Wilhelm D; Knoll A
    Int J Comput Assist Radiol Surg; 2023 Feb; 18(2):195-204. PubMed ID: 36088614
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.