These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 28180210)
1. Slip on a particle surface as the possible origin of shear thinning in non-Brownian suspensions. Kroupa M; Soos M; Kosek J Phys Chem Chem Phys; 2017 Feb; 19(8):5979-5984. PubMed ID: 28180210 [TBL] [Abstract][Full Text] [Related]
2. Heterogeneous solvent dissipation coupled with particle rearrangement in shear-thinning non-Brownian suspensions. Terayama T; Furukawa A Soft Matter; 2024 Aug; 20(34):6714-6722. PubMed ID: 39023041 [TBL] [Abstract][Full Text] [Related]
3. Probing Shear Thinning Behaviors of IgG Molecules at the Air-Water Interface via Rheological Methods. Gleason C; Yee C; Masatani P; Middaugh CR; Vance A Langmuir; 2016 Jan; 32(2):496-504. PubMed ID: 26673996 [TBL] [Abstract][Full Text] [Related]
4. Rheological study of two-dimensional very anisometric colloidal particle suspensions: from shear-induced orientation to viscous dissipation. Philippe AM; Baravian C; Bezuglyy V; Angilella JR; Meneau F; Bihannic I; Michot LJ Langmuir; 2013 Apr; 29(17):5315-24. PubMed ID: 23544905 [TBL] [Abstract][Full Text] [Related]
5. Shear thickening in granular suspensions: interparticle friction and dynamically correlated clusters. Heussinger C Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):050201. PubMed ID: 24329197 [TBL] [Abstract][Full Text] [Related]
6. Effect of Particle Specific Surface Area on the Rheology of Non-Brownian Silica Suspensions. Papadopoulou A; Gillissen JJJ; Tiwari MK; Balabani S Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33081380 [TBL] [Abstract][Full Text] [Related]
8. Local shear stress and its correlation with local volume fraction in concentrated non-Brownian suspensions: lattice Boltzmann simulation. Lee YK; Ahn KH; Lee SJ Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062317. PubMed ID: 25615103 [TBL] [Abstract][Full Text] [Related]
10. Dynamics of shear-thinning suspensions of core-shell structured latex particles. Nakamura H; Tachi K J Colloid Interface Sci; 2006 May; 297(1):312-6. PubMed ID: 16289131 [TBL] [Abstract][Full Text] [Related]
11. Shear thickening of dense suspensions due to energy dissipation in lubrication layers between particles. Iskakova LY; Zubarev AY Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032303. PubMed ID: 24125264 [TBL] [Abstract][Full Text] [Related]
12. Utilizing the Discrete Element Method for the Modeling of Viscosity in Concentrated Suspensions. Kroupa M; Vonka M; Soos M; Kosek J Langmuir; 2016 Aug; 32(33):8451-60. PubMed ID: 27479150 [TBL] [Abstract][Full Text] [Related]
13. Direct numerical simulations for non-Newtonian rheology of concentrated particle dispersions. Iwashita T; Yamamoto R Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061402. PubMed ID: 20365170 [TBL] [Abstract][Full Text] [Related]
14. Discontinuous shear thickening in Brownian suspensions by dynamic simulation. Mari R; Seto R; Morris JF; Denn MM Proc Natl Acad Sci U S A; 2015 Dec; 112(50):15326-30. PubMed ID: 26621744 [TBL] [Abstract][Full Text] [Related]
15. Shear thickening of cornstarch suspensions as a reentrant jamming transition. Fall A; Huang N; Bertrand F; Ovarlez G; Bonn D Phys Rev Lett; 2008 Jan; 100(1):018301. PubMed ID: 18232829 [TBL] [Abstract][Full Text] [Related]
16. Rheology of Colloidal Particles in a Confined Channel under Shear Flow by Brownian Dynamic Simulations. Valdez MA; Manero O J Colloid Interface Sci; 1997 Jun; 190(1):81-91. PubMed ID: 9241145 [TBL] [Abstract][Full Text] [Related]
17. Apparent slip of shear thinning fluid in a microchannel with a superhydrophobic wall. Patlazhan S; Vagner S Phys Rev E; 2017 Jul; 96(1-1):013104. PubMed ID: 29347200 [TBL] [Abstract][Full Text] [Related]
18. Dynamic mechanical properties of suspensions of micellar casein particles. Panouillé M; Benyahia L; Durand D; Nicolai T J Colloid Interface Sci; 2005 Jul; 287(2):468-75. PubMed ID: 15925612 [TBL] [Abstract][Full Text] [Related]
19. Structure and rheological behavior of highly charged colloidal particles in a cylindrical pore I. Effect of pore size. Valdez MA; Gámez-Corrales R J Colloid Interface Sci; 2003 Nov; 267(1):233-42. PubMed ID: 14554189 [TBL] [Abstract][Full Text] [Related]
20. Brownian dynamics simulation of orientational behavior, flow-induced structure, and rheological properties of a suspension of oblate spheroid particles under simple shear. Yamamoto T; Suga T; Mori N Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021509. PubMed ID: 16196575 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]