These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 28180221)

  • 1. Interpretation of Tolman electronic parameters in the light of natural orbitals for chemical valence.
    Ardizzoia GA; Brenna S
    Phys Chem Chem Phys; 2017 Feb; 19(8):5971-5978. PubMed ID: 28180221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. When the Tolman electronic parameter fails: a comparative DFT and charge displacement study of [(L)Ni(CO)₃](0/-) and [(L)Au(CO)](0/+).
    Ciancaleoni G; Scafuri N; Bistoni G; Macchioni A; Tarantelli F; Zuccaccia D; Belpassi L
    Inorg Chem; 2014 Sep; 53(18):9907-16. PubMed ID: 25166741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Characterization of Bidentate P-Donor Ligands: Direct Comparison to Tolman's Electronic Parameters.
    Kégl TR; Pálinkás N; Kollár L; Kégl T
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30513796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring Phosphine Electronic Effects on Molybdenum Complexes: A Combined Photoelectron Spectroscopy and Energy Decomposition Analysis Study.
    Dossmann H; Gatineau D; Clavier H; Memboeuf A; Lesage D; Gimbert Y
    J Phys Chem A; 2020 Oct; 124(42):8753-8765. PubMed ID: 33045825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Measure of Metal-Ligand Bonding Replacing the Tolman Electronic Parameter.
    Setiawan D; Kalescky R; Kraka E; Cremer D
    Inorg Chem; 2016 Mar; 55(5):2332-44. PubMed ID: 26900632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Descriptions of Dewar-Chatt-Duncanson Bonding Model: A Case Study of Zeise and Its Family Ions.
    Yang T; Li Z; Wang XB; Hou GL
    Chemphyschem; 2023 Apr; 24(8):e202200835. PubMed ID: 36622739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational assessment on the Tolman cone angles for P-ligands.
    Jover J; Cirera J
    Dalton Trans; 2019 Oct; 48(40):15036-15048. PubMed ID: 31513203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ligand effect on the oxidative addition of dioxygen to gold(i)-hydride complexes.
    Gaggioli CA; Belpassi L; Tarantelli F; Harvey JN; Belanzoni P
    Dalton Trans; 2017 Sep; 46(35):11679-11690. PubMed ID: 28820534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valence bond approach of metal-ligand bonding in the Dewar-Chatt-Duncanson model.
    Linares M; Braida B; Humbel S
    Inorg Chem; 2007 Dec; 46(26):11390-6. PubMed ID: 18044956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes.
    Mitoraj M; Michalak A
    J Mol Model; 2007 Feb; 13(2):347-55. PubMed ID: 17024408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical study of mononuclear nickel(I), nickel(0), copper(i), and cobalt(I) dioxygen complexes: new insight into differences and similarities in geometry and bonding nature.
    Chen Y; Sakaki S
    Inorg Chem; 2013 Nov; 52(22):13146-59. PubMed ID: 24195520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-Reactivity Correlations for the Dissociative Uncatalyzed Isomerization of Monoalkylbis(phosphine)platinum(II) Solvento Complexes.
    Romeo R; Alibrandi G
    Inorg Chem; 1997 Oct; 36(21):4822-4830. PubMed ID: 11670162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of halogen bonding on gold(i)-ligand bond components and DFT characterization of a gold-iodine halogen bond.
    Buttarazzi E; Rosi F; Ciancaleoni G
    Phys Chem Chem Phys; 2019 Sep; 21(36):20478-20485. PubMed ID: 31463502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition-metal complexes [(PMe(3))(2)Cl(2)M(E)] and [(PMe(3))(2)(CO)(2)M(E)] with naked group 14 atoms (E=C-Sn) as ligands; part 1: parent compounds.
    Parameswaran P; Frenking G
    Chemistry; 2009 Sep; 15(35):8807-16. PubMed ID: 19609989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water-Soluble Phosphine Capable of Dissolving Elemental Gold: The Missing Link between 1,3,5-Triaza-7-phosphaadamantane (PTA) and Verkade's Ephemeral Ligand.
    Britvin SN; Lotnyk A
    J Am Chem Soc; 2015 Apr; 137(16):5526-35. PubMed ID: 25897572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge-displacement analysis via natural orbitals for chemical valence: charge transfer effects in coordination chemistry.
    Bistoni G; Rampino S; Tarantelli F; Belpassi L
    J Chem Phys; 2015 Feb; 142(8):084112. PubMed ID: 25725717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the Dewar-Chatt-Duncanson model for catalytic gold(I) complexes.
    Salvi N; Belpassi L; Tarantelli F
    Chemistry; 2010 Jun; 16(24):7231-40. PubMed ID: 20468042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct metal-carbon bonding in symmetric bis(C-H) agostic nickel(i) complexes.
    He W; Beattie DD; Zhou H; Bowes EG; Schafer LL; Love JA; Kennepohl P
    Chem Sci; 2021 Dec; 12(46):15298-15307. PubMed ID: 34976350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Edge of the Known: Extremely Electron-Rich (Di)Carboranyl Phosphines.
    Schulz J; Clauss R; Kazimir A; Holzknecht S; Hey-Hawkins E
    Angew Chem Int Ed Engl; 2023 Mar; 62(14):e202218648. PubMed ID: 36573025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.