These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 28180999)

  • 1. Biotic conversion of sulphate to sulphide and abiotic conversion of sulphide to sulphur in a microbial fuel cell using cobalt oxide octahedrons as cathode catalyst.
    Chatterjee P; Ghangrekar MM; Rao S; Kumar S
    Bioprocess Biosyst Eng; 2017 May; 40(5):759-768. PubMed ID: 28180999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioelectro-Claus processes using MFC technology: Influence of co-substrate.
    Raschitor A; Soreanu G; Fernandez-Marchante CM; Lobato J; Cañizares P; Cretescu I; Rodrigo MA
    Bioresour Technol; 2015; 189():94-98. PubMed ID: 25876228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Power generation using spinel manganese-cobalt oxide as a cathode catalyst for microbial fuel cell applications.
    Mahmoud M; Gad-Allah TA; El-Khatib KM; El-Gohary F
    Bioresour Technol; 2011 Nov; 102(22):10459-64. PubMed ID: 21944282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Producing electrical energy in microbial fuel cells based on sulphate reduction: a review.
    Rodrigues ICB; Leão VA
    Environ Sci Pollut Res Int; 2020 Oct; 27(29):36075-36084. PubMed ID: 32613514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Electricity generation from sweet potato fuel ethanol wastewater using microbial fuel cell technology].
    Cai XB; Yang Y; Sun YP; Zhang L; Xiao Y; Zhao H
    Huan Jing Ke Xue; 2010 Oct; 31(10):2512-7. PubMed ID: 21229770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of air-cathode pipe reactor to simultaneously suppress sulphate reduction and accelerate COD oxidation in synthetic wastewater.
    Aboutalebi H; Sathasivan A; Kuan MS
    Bioresour Technol; 2012 Jun; 113():276-9. PubMed ID: 22361071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Batch and continuous biooxidation of sulphide by Thiomicrospira sp. CVO: reaction kinetics and stoichiometry.
    Gadekar S; Nemati M; Hill GA
    Water Res; 2006 Jul; 40(12):2436-46. PubMed ID: 16730776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interrelation between sulphur and conductive materials and its impact on ammonium and organic pollutants removal in electroactive wetlands.
    Srivastava P; Abbassi R; Yadav AK; Garaniya V; Lewis T; Zhao Y; Aminabhavi T
    J Hazard Mater; 2021 Oct; 419():126417. PubMed ID: 34174621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixed sulfate-reducing bacteria-enriched microbial fuel cells for the treatment of wastewater containing copper.
    Miran W; Jang J; Nawaz M; Shahzad A; Jeong SE; Jeon CO; Lee DS
    Chemosphere; 2017 Dec; 189():134-142. PubMed ID: 28934653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of enhanced sulphidogenesis process for the treatment of wastewater having low COD/SO(4)(2-) ratio.
    Sabumon PC
    J Hazard Mater; 2008 Nov; 159(2-3):616-25. PubMed ID: 18400386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocatalysed sulphate removal in a BES cathode.
    Coma M; Puig S; Pous N; Balaguer MD; Colprim J
    Bioresour Technol; 2013 Feb; 130():218-23. PubMed ID: 23313666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant removal from wastewater using photo-cathode microbial fuel cell and laterite-based hybrid treatment system.
    Sathe SM; Bhowmick GD; Dubey BK; Ghangrekar MM
    Bioprocess Biosyst Eng; 2020 Nov; 43(11):2075-2084. PubMed ID: 32596770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The development of catalytic performance by coating Pt-Ni on CMI7000 membrane as a cathode of a microbial fuel cell.
    Cetinkaya AY; Ozdemir OK; Koroglu EO; Hasimoglu A; Ozkaya B
    Bioresour Technol; 2015 Nov; 195():188-93. PubMed ID: 26116447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The addition of ortho-hexagon nano spinel Co3O4 to improve the performance of activated carbon air cathode microbial fuel cell.
    Ge B; Li K; Fu Z; Pu L; Zhang X
    Bioresour Technol; 2015 Nov; 195():180-7. PubMed ID: 26112347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of porous Co3O4 nanorods as cathode catalyst for oxygen reduction reaction in microbial fuel cells.
    Kumar R; Singh L; Zularisam AW; Hai FI
    Bioresour Technol; 2016 Nov; 220():537-542. PubMed ID: 27614156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of sulphate addition and sulphide inhibition on microbial fuel cells.
    Ieropoulos I; Gálvez A; Greenman J
    Enzyme Microb Technol; 2013 Jan; 52(1):32-7. PubMed ID: 23199736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen availability effect on the performance of air-breathing cathode microbial fuel cell.
    Mateo S; Rodrigo M; Fonseca LP; Cañizares P; Fernandez-Morales FJ
    Biotechnol Prog; 2015; 31(4):900-7. PubMed ID: 25962613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater.
    Liu XW; Sun XF; Huang YX; Sheng GP; Zhou K; Zeng RJ; Dong F; Wang SG; Xu AW; Tong ZH; Yu HQ
    Water Res; 2010 Oct; 44(18):5298-305. PubMed ID: 20638701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Performance of a single chamber microbial fuel cell utilizing Dioscorea zingiberensis C. H. Wright wastewater].
    Wang C; Xue A; Zhao HZ; Zhang BG; Ni JR
    Huan Jing Ke Xue; 2009 Oct; 30(10):3093-8. PubMed ID: 19968137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous removal of organic matter and iron from hydraulic fracturing flowback water through sulfur cycling in a microbial fuel cell.
    Zhang X; Zhang D; Huang Y; Zhang K; Lu P
    Water Res; 2018 Dec; 147():461-471. PubMed ID: 30343202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.