These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28181433)

  • 1. Influence of Surface Adsorption on the Oxygen Evolution Reaction on IrO
    Kuo DY; Kawasaki JK; Nelson JN; Kloppenburg J; Hautier G; Shen KM; Schlom DG; Suntivich J
    J Am Chem Soc; 2017 Mar; 139(9):3473-3479. PubMed ID: 28181433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions.
    Lee Y; Suntivich J; May KJ; Perry EE; Shao-Horn Y
    J Phys Chem Lett; 2012 Feb; 3(3):399-404. PubMed ID: 26285858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of Oxygen Electroadsorption Energies and Oxygen Evolution Reaction on RuO
    Kuo DY; Paik H; Kloppenburg J; Faeth B; Shen KM; Schlom DG; Hautier G; Suntivich J
    J Am Chem Soc; 2018 Dec; 140(50):17597-17605. PubMed ID: 30463402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational Manipulation of IrO
    Sun W; Zhou Z; Zaman WQ; Cao LM; Yang J
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41855-41862. PubMed ID: 29148711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orientation-Dependent Oxygen Evolution Activities of Rutile IrO2 and RuO2.
    Stoerzinger KA; Qiao L; Biegalski MD; Shao-Horn Y
    J Phys Chem Lett; 2014 May; 5(10):1636-41. PubMed ID: 26270358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SrNb(0.1)Co(0.7)Fe(0.2)O(3-δ) perovskite as a next-generation electrocatalyst for oxygen evolution in alkaline solution.
    Zhu Y; Zhou W; Chen ZG; Chen Y; Su C; Tadé MO; Shao Z
    Angew Chem Int Ed Engl; 2015 Mar; 54(13):3897-901. PubMed ID: 25653050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SrCo(0.9)Ti(0.1)O(3-δ) As a New Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Electrolyte with Stable Performance.
    Su C; Wang W; Chen Y; Yang G; Xu X; Tadé MO; Shao Z
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):17663-70. PubMed ID: 26222739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Ir-OOOO-Ir transition state and the mechanism of the oxygen evolution reaction on IrO
    Binninger T; Doublet ML
    Energy Environ Sci; 2022 Jun; 15(6):2519-2528. PubMed ID: 36204599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Reaction Mechanism with Free Energy Barriers at Constant Potentials for the Oxygen Evolution Reaction at the IrO(2) (110) Surface.
    Ping Y; Nielsen RJ; Goddard WA
    J Am Chem Soc; 2017 Jan; 139(1):149-155. PubMed ID: 27936679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of Active Sites via Crystal Phase, Composition, and Morphology for Efficient Low-Iridium Oxygen Evolution Catalysts.
    Chen H; Shi L; Liang X; Wang L; Asefa T; Zou X
    Angew Chem Int Ed Engl; 2020 Oct; 59(44):19654-19658. PubMed ID: 32485084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulating the Spin State of Fe
    Shen G; Zhang R; Pan L; Hou F; Zhao Y; Shen Z; Mi W; Shi C; Wang Q; Zhang X; Zou JJ
    Angew Chem Int Ed Engl; 2020 Feb; 59(6):2313-2317. PubMed ID: 31743560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hollandite Structure K(x≈0.25)IrO2 Catalyst with Highly Efficient Oxygen Evolution Reaction.
    Sun W; Song Y; Gong XQ; Cao LM; Yang J
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):820-6. PubMed ID: 26694881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Structure Evolution of Composition Segregated Iridium-Nickel Rhombic Dodecahedra toward Efficient Oxygen Evolution Electrocatalysis.
    Pi Y; Shao Q; Zhu X; Huang X
    ACS Nano; 2018 Jul; 12(7):7371-7379. PubMed ID: 29924585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design-controlled synthesis of IrO
    de Freitas IC; Parreira LS; Barbosa ECM; Novaes BA; Mou T; Alves TV; Quiroz J; Wang YC; Slater TJ; Thomas A; Wang B; Haigh SJ; Camargo PHC
    Nanoscale; 2020 Jun; 12(23):12281-12291. PubMed ID: 32319490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction.
    Seitz LC; Dickens CF; Nishio K; Hikita Y; Montoya J; Doyle A; Kirk C; Vojvodic A; Hwang HY; Norskov JK; Jaramillo TF
    Science; 2016 Sep; 353(6303):1011-1014. PubMed ID: 27701108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrolyte-Dependent Oxygen Evolution Reactions in Alkaline Media: Electrical Double Layer and Interfacial Interactions.
    Li GF; Divinagracia M; Labata MF; Ocon JD; Abel Chuang PY
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33748-33758. PubMed ID: 31436074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives.
    Suen NT; Hung SF; Quan Q; Zhang N; Xu YJ; Chen HM
    Chem Soc Rev; 2017 Jan; 46(2):337-365. PubMed ID: 28083578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-Step Electrospun Ir/IrO
    Moon S; Cho YB; Yu A; Kim MH; Lee C; Lee Y
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):1979-1987. PubMed ID: 30582793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrodeposition of High-Surface-Area IrO
    Park YJ; Lee J; Park YS; Yang J; Jang MJ; Jeong J; Choe S; Lee JW; Kwon JD; Choi SM
    Front Chem; 2020; 8():593272. PubMed ID: 33195098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boosting water oxidation layer-by-layer.
    Hidalgo-Acosta JC; Scanlon MD; Méndez MA; Amstutz V; Vrubel H; Opallo M; Girault HH
    Phys Chem Chem Phys; 2016 Apr; 18(13):9295-304. PubMed ID: 26977761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.