These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 28181476)
1. Biological and mechanical evaluation of poly(lactic-co-glycolic acid)-based composites reinforced with 1D, 2D and 3D carbon biomaterials for bone tissue regeneration. Kaur T; Kulanthaivel S; Thirugnanam A; Banerjee I; Pramanik K Biomed Mater; 2017 Mar; 12(2):025012. PubMed ID: 28181476 [TBL] [Abstract][Full Text] [Related]
2. Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation. Mikael PE; Amini AR; Basu J; Josefina Arellano-Jimenez M; Laurencin CT; Sanders MM; Barry Carter C; Nukavarapu SP Biomed Mater; 2014 Jun; 9(3):035001. PubMed ID: 24687391 [TBL] [Abstract][Full Text] [Related]
3. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide. Shao W; He J; Sang F; Wang Q; Chen L; Cui S; Ding B Mater Sci Eng C Mater Biol Appl; 2016 May; 62():823-34. PubMed ID: 26952489 [TBL] [Abstract][Full Text] [Related]
4. Enhanced osteogenic differentiation and bone regeneration of poly(lactic-co-glycolic acid) by graphene via activation of PI3K/Akt/GSK-3β/β-catenin signal circuit. Wu X; Zheng S; Ye Y; Wu Y; Lin K; Su J Biomater Sci; 2018 May; 6(5):1147-1158. PubMed ID: 29561031 [TBL] [Abstract][Full Text] [Related]
5. Single walled carbon nanotube composites for bone tissue engineering. Gupta A; Woods MD; Illingworth KD; Niemeier R; Schafer I; Cady C; Filip P; El-Amin SF J Orthop Res; 2013 Sep; 31(9):1374-81. PubMed ID: 23629922 [TBL] [Abstract][Full Text] [Related]
6. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering. Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130 [TBL] [Abstract][Full Text] [Related]
7. Effect of l-lysine-assisted surface grafting for nano-hydroxyapatite on mechanical properties and in vitro bioactivity of poly(lactic acid-co-glycolic acid). Liuyun J; Lixin J; Chengdong X; Lijuan X; Ye L J Biomater Appl; 2016 Jan; 30(6):750-8. PubMed ID: 25940015 [TBL] [Abstract][Full Text] [Related]
8. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering. Zhang S; Prabhakaran MP; Qin X; Ramakrishna S J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285 [TBL] [Abstract][Full Text] [Related]
9. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content. He S; Lin KF; Sun Z; Song Y; Zhao YN; Wang Z; Bi L; Liu J Artif Organs; 2016 Jul; 40(7):E128-35. PubMed ID: 27378617 [TBL] [Abstract][Full Text] [Related]
10. Culturing primary human osteoblasts on electrospun poly(lactic-co-glycolic acid) and poly(lactic-co-glycolic acid)/nanohydroxyapatite scaffolds for bone tissue engineering. Li M; Liu W; Sun J; Xianyu Y; Wang J; Zhang W; Zheng W; Huang D; Di S; Long YZ; Jiang X ACS Appl Mater Interfaces; 2013 Jul; 5(13):5921-6. PubMed ID: 23790233 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms of greater cardiomyocyte functions on conductive nanoengineered composites for cardiovascular application. Stout DA; Yoo J; Santiago-Miranda AN; Webster TJ Int J Nanomedicine; 2012; 7():5653-69. PubMed ID: 23180962 [TBL] [Abstract][Full Text] [Related]
12. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. Luo Y; Shen H; Fang Y; Cao Y; Huang J; Zhang M; Dai J; Shi X; Zhang Z ACS Appl Mater Interfaces; 2015 Mar; 7(11):6331-9. PubMed ID: 25741576 [TBL] [Abstract][Full Text] [Related]
13. A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Liao S; Wang W; Uo M; Ohkawa S; Akasaka T; Tamura K; Cui F; Watari F Biomaterials; 2005 Dec; 26(36):7564-71. PubMed ID: 16005963 [TBL] [Abstract][Full Text] [Related]
14. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration. Silva E; Vasconcellos LMR; Rodrigues BVM; Dos Santos DM; Campana-Filho SP; Marciano FR; Webster TJ; Lobo AO Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():31-39. PubMed ID: 28183613 [TBL] [Abstract][Full Text] [Related]
15. Poly(lactic-co-glycolic acid) bone scaffolds with inverted colloidal crystal geometry. Cuddihy MJ; Kotov NA Tissue Eng Part A; 2008 Oct; 14(10):1639-49. PubMed ID: 18491955 [TBL] [Abstract][Full Text] [Related]
16. Incorporation of carboxylation multiwalled carbon nanotubes into biodegradable poly(lactic-co-glycolic acid) for bone tissue engineering. Lin C; Wang Y; Lai Y; Yang W; Jiao F; Zhang H; Ye S; Zhang Q Colloids Surf B Biointerfaces; 2011 Apr; 83(2):367-75. PubMed ID: 21208787 [TBL] [Abstract][Full Text] [Related]
17. Pressure-activated microsyringe (PAM) fabrication of bioactive glass-poly(lactic-co-glycolic acid) composite scaffolds for bone tissue regeneration. Mattioli-Belmonte M; De Maria C; Vitale-Brovarone C; Baino F; Dicarlo M; Vozzi G J Tissue Eng Regen Med; 2017 Jul; 11(7):1986-1997. PubMed ID: 26510714 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of PLGA/MWNTs composite electrospun fibrous scaffolds for improved myogenic differentiation of C2C12 cells. Xu J; Xie Y; Zhang H; Ye Z; Zhang W Colloids Surf B Biointerfaces; 2014 Nov; 123():907-15. PubMed ID: 25466454 [TBL] [Abstract][Full Text] [Related]
19. Multiwalled carbon nanotube-modified poly(D,L-lactide-co-glycolide) scaffolds for dendritic cell load. Yang Y; Shi S; Ding Q; Chen J; Peng J; Xu Y J Biomed Mater Res A; 2015 Mar; 103(3):1045-52. PubMed ID: 24909141 [TBL] [Abstract][Full Text] [Related]
20. In vivo magnetic resonance imaging of the distribution pattern of gadonanotubes released from a degrading poly(lactic-co-glycolic Acid) scaffold. van der Zande M; Sitharaman B; Walboomers XF; Tran L; Ananta JS; Veltien A; Wilson LJ; Alava JI; Heerschap A; Mikos AG; Jansen JA Tissue Eng Part C Methods; 2011 Jan; 17(1):19-26. PubMed ID: 20666611 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]