BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 28181476)

  • 21. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering.
    Doğan A; Demirci S; Bayir Y; Halici Z; Karakus E; Aydin A; Cadirci E; Albayrak A; Demirci E; Karaman A; Ayan AK; Gundogdu C; Sahin F
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():246-53. PubMed ID: 25280703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.
    Jiang T; Khan Y; Nair LS; Abdel-Fattah WI; Laurencin CT
    J Biomed Mater Res A; 2010 Jun; 93(3):1193-208. PubMed ID: 19777575
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites.
    Asiri AM; Marwani HM; Khan SB; Webster TJ
    Int J Nanomedicine; 2014; 9():5533-9. PubMed ID: 25489241
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties.
    Filipowska J; Pawlik J; Cholewa-Kowalska K; Tylko G; Pamula E; Niedzwiedzki L; Szuta M; Laczka M; Osyczka AM
    Biomed Mater; 2014 Oct; 9(6):065001. PubMed ID: 25329328
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2.
    Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M
    J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Histological and biomechanical properties of regenerated articular cartilage using chondrogenic bone marrow stromal cells with a PLGA scaffold in vivo.
    Han SH; Kim YH; Park MS; Kim IA; Shin JW; Yang WI; Jee KS; Park KD; Ryu GH; Lee JW
    J Biomed Mater Res A; 2008 Dec; 87(4):850-61. PubMed ID: 18200543
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication and characterization of poly(D,L-lactide-co-glycolide)/hydroxyapatite nanocomposite scaffolds for bone tissue regeneration.
    Aboudzadeh N; Imani M; Shokrgozar MA; Khavandi A; Javadpour J; Shafieyan Y; Farokhi M
    J Biomed Mater Res A; 2010 Jul; 94(1):137-45. PubMed ID: 20127996
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation, characterization and in vitro testing of poly(lactic-co-glycolic) acid/barium titanate nanoparticle composites for enhanced cellular proliferation.
    Ciofani G; Ricotti L; Mattoli V
    Biomed Microdevices; 2011 Apr; 13(2):255-66. PubMed ID: 20981490
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A protein/antibiotic releasing poly(lactic-co-glycolic acid)/lecithin scaffold for bone repair applications.
    Shi X; Wang Y; Ren L; Huang W; Wang DA
    Int J Pharm; 2009 May; 373(1-2):85-92. PubMed ID: 19429292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering.
    Gentile P; Chiono V; Carmagnola I; Hatton PV
    Int J Mol Sci; 2014 Feb; 15(3):3640-59. PubMed ID: 24590126
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation, characterization, and in vitro biological evaluation of PLGA/nano-fluorohydroxyapatite (FHA) microsphere-sintered scaffolds for biomedical applications.
    Tahriri M; Moztarzadeh F
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2465-79. PubMed ID: 24395697
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coating of ß-tricalcium phosphate scaffolds-a comparison between graphene oxide and poly-lactic-co-glycolic acid.
    Ardjomandi N; Henrich A; Huth J; Klein C; Schweizer E; Scheideler L; Rupp F; Reinert S; Alexander D
    Biomed Mater; 2015 Aug; 10(4):045018. PubMed ID: 26238604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication and in vitro biocompatibility of biomorphic PLGA/nHA composite scaffolds for bone tissue engineering.
    Qian J; Xu W; Yong X; Jin X; Zhang W
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():95-101. PubMed ID: 24433891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antimicrobial biomaterials based on carbon nanotubes dispersed in poly(lactic-co-glycolic acid).
    Aslan S; Loebick CZ; Kang S; Elimelech M; Pfefferle LD; Van Tassel PR
    Nanoscale; 2010 Sep; 2(9):1789-94. PubMed ID: 20680202
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional composites manufactured with human mesenchymal cambial layer precursor cells as an alternative for sinus floor augmentation: an in vitro study.
    Turhani D; Watzinger E; Weissenböck M; Yerit K; Cvikl B; Thurnher D; Ewers R
    Clin Oral Implants Res; 2005 Aug; 16(4):417-24. PubMed ID: 16117765
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Basic research on aw-AC/PLGA composite scaffolds for bone tissue engineering.
    Minamiguchi S; Takechi M; Yuasa T; Momota Y; Tatehara S; Takano H; Miyamoto Y; Satomura K; Nagayama M
    J Mater Sci Mater Med; 2008 Mar; 19(3):1165-72. PubMed ID: 17701319
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synergistic Effect of Carbon Nanotubes and Graphene on Diopside Scaffolds.
    Liu T; Wu P; Gao C; Feng P; Xiao T; Deng Y; Shuai C; Peng S
    Biomed Res Int; 2016; 2016():7090635. PubMed ID: 27144173
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-neutralizing PLGA/magnesium composites as novel biomaterials for tissue engineering.
    Xu TO; Kim HS; Stahl T; Nukavarapu SP
    Biomed Mater; 2018 Mar; 13(3):035013. PubMed ID: 29362293
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Validation of scaffold design optimization in bone tissue engineering: finite element modeling versus designed experiments.
    Uth N; Mueller J; Smucker B; Yousefi AM
    Biofabrication; 2017 Feb; 9(1):015023. PubMed ID: 28222045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.