These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 28181480)
21. A Monte Carlo study of cellular S-factors for 1 keV to 1 MeV electrons. Bousis C; Emfietzoglou D; Hadjidoukas P; Nikjoo H Phys Med Biol; 2009 Aug; 54(16):5023-38. PubMed ID: 19652289 [TBL] [Abstract][Full Text] [Related]
22. Microdosimetric investigation of the radiation quality of low-medium energy electrons using Geant4-DNA. Kyriakou I; Tremi I; Georgakilas AG; Emfietzoglou D Appl Radiat Isot; 2021 Jun; 172():109654. PubMed ID: 33676082 [TBL] [Abstract][Full Text] [Related]
23. Monte Carlo simulations of nanodosimetry and radiolytic species production for monoenergetic proton and electron beams: Benchmarking of GEANT4-DNA and LPCHEM codes. Ali Y; Auzel L; Monini C; Kriachok K; Létang JM; Testa E; Maigne L; Beuve M Med Phys; 2022 May; 49(5):3457-3469. PubMed ID: 35318686 [TBL] [Abstract][Full Text] [Related]
24. Microdosimetry calculations for monoenergetic electrons using Geant4-DNA combined with a weighted track sampling algorithm. Famulari G; Pater P; Enger SA Phys Med Biol; 2017 Jul; 62(13):5495-5508. PubMed ID: 28486214 [TBL] [Abstract][Full Text] [Related]
25. The COOLER Code: A Novel Analytical Approach to Calculate Subcellular Energy Deposition by Internal Electron Emitters. Siragusa M; Baiocco G; Fredericia PM; Friedland W; Groesser T; Ottolenghi A; Jensen M Radiat Res; 2017 Aug; 188(2):204-220. PubMed ID: 28621586 [TBL] [Abstract][Full Text] [Related]
26. Microdosimetry of the Auger electron emitting 123I radionuclide using Geant4-DNA simulations. Fourie H; Newman RT; Slabbert JP Phys Med Biol; 2015 Apr; 60(8):3333-46. PubMed ID: 25825914 [TBL] [Abstract][Full Text] [Related]
27. Investigating the feasibility of TOPAS-nBio for Monte Carlo track structure simulations by adapting GEANT4-DNA examples application. Derksen L; Pfuhl T; Engenhart-Cabillic R; Zink K; Baumann KS Phys Med Biol; 2021 Aug; 66(17):. PubMed ID: 34384060 [No Abstract] [Full Text] [Related]
28. Comparison between an event-by-event Monte Carlo code, NOREC, and ETRAN for electron scaled point kernels between 20 keV and 1 MeV. Cho SH; Vassiliev ON; Horton JL Radiat Environ Biophys; 2007 Mar; 46(1):77-83. PubMed ID: 17219152 [TBL] [Abstract][Full Text] [Related]
29. Electron track structure simulations in a gold nanoparticle using Geant4-DNA. Sakata D; Kyriakou I; Tran HN; Bordage MC; Rosenfeld A; Ivanchenko V; Incerti S; Emfietzoglou D; Guatelli S Phys Med; 2019 Jul; 63():98-104. PubMed ID: 31221415 [TBL] [Abstract][Full Text] [Related]
30. Determination of kQmsr,Q0fmsr,fref factors for ion chambers used in the calibration of Leksell Gamma Knife Perfexion model using EGSnrc and PENELOPE Monte Carlo codes. Mirzakhanian L; Benmakhlouf H; Tessier F; Seuntjens J Med Phys; 2018 Apr; 45(4):1748-1757. PubMed ID: 29468677 [TBL] [Abstract][Full Text] [Related]
31. Research on the proximity functions of microdosimetry of low energy electrons in liquid water based on different Monte Carlo codes. Du C; Wang Y; Xue H; Gao H; Liu K; Kong X; Zhang W; Yin Y; Qiu D; Wang Y; Sun L Phys Med; 2022 Sep; 101():120-128. PubMed ID: 35988482 [TBL] [Abstract][Full Text] [Related]
32. Nanoscale gold nanoparticle (GNP)-laden tumor cell model and its use for estimation of intracellular dose from GNP-induced secondary electrons. Jayarathna S; Kaphle A; Krishnan S; Cho SH Med Phys; 2024 Sep; 51(9):6276-6291. PubMed ID: 38935922 [TBL] [Abstract][Full Text] [Related]
33. Monte Carlo simulation of water radiolysis for low-energy charged particles. Uehara S; Nikjoo H J Radiat Res; 2006 Mar; 47(1):69-81. PubMed ID: 16571920 [TBL] [Abstract][Full Text] [Related]
34. A comparative study on Monte Carlo simulations of electron emission from liquid water. Mehnaz ; Yang LH; Zou YB; Da B; Mao SF; Li HM; Zhao YF; Ding ZJ Med Phys; 2020 Feb; 47(2):759-771. PubMed ID: 31702062 [TBL] [Abstract][Full Text] [Related]
35. Condensed-history Monte Carlo simulation of the dosimetric distribution of electron microbeam. Ma Y; Zhou H; Zhuo Y Radiat Environ Biophys; 2006 Mar; 44(4):299-305. PubMed ID: 16456670 [TBL] [Abstract][Full Text] [Related]
36. Assessment of MIRD data for internal dosimetry using the GATE Monte Carlo code. Parach AA; Rajabi H; Askari MA Radiat Environ Biophys; 2011 Aug; 50(3):441-50. PubMed ID: 21573984 [TBL] [Abstract][Full Text] [Related]
37. Monte Carlo single-cell dosimetry using Geant4-DNA: the effects of cell nucleus displacement and rotation on cellular S values. Salim R; Taherparvar P Radiat Environ Biophys; 2019 Aug; 58(3):353-371. PubMed ID: 30927051 [TBL] [Abstract][Full Text] [Related]
38. A method to perform multi-scale Monte Carlo simulations in the clinical setting. Lucido JJ; Popescu IA; Moiseenko V Radiat Prot Dosimetry; 2015 Sep; 166(1-4):356-60. PubMed ID: 26242976 [TBL] [Abstract][Full Text] [Related]
39. Dosimetry assessment of theranostic Auger-emitting radionuclides in a micron-sized multicellular cluster model: A Monte Carlo study using Geant4-DNA simulations. Salim R; Taherparvar P Appl Radiat Isot; 2022 Oct; 188():110380. PubMed ID: 35868198 [TBL] [Abstract][Full Text] [Related]
40. Dose point kernel simulation for monoenergetic electrons and radionuclides using Monte Carlo techniques. Wu J; Liu YL; Chang SJ; Chao MM; Tsai SY; Huang DE Radiat Prot Dosimetry; 2012 Nov; 152(1-3):119-24. PubMed ID: 22923242 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]