These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 28181878)
1. Using Inspiration from Synaptic Plasticity Rules to Optimize Traffic Flow in Distributed Engineered Networks. Suen JY; Navlakha S Neural Comput; 2017 May; 29(5):1204-1228. PubMed ID: 28181878 [TBL] [Abstract][Full Text] [Related]
2. Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons. Burbank KS PLoS Comput Biol; 2015 Dec; 11(12):e1004566. PubMed ID: 26633645 [TBL] [Abstract][Full Text] [Related]
3. A Scalable Weight-Free Learning Algorithm for Regulatory Control of Cell Activity in Spiking Neuronal Networks. Zhang X; Foderaro G; Henriquez C; Ferrari S Int J Neural Syst; 2018 Mar; 28(2):1750015. PubMed ID: 28270025 [TBL] [Abstract][Full Text] [Related]
4. Self-tuning of neural circuits through short-term synaptic plasticity. Sussillo D; Toyoizumi T; Maass W J Neurophysiol; 2007 Jun; 97(6):4079-95. PubMed ID: 17409166 [TBL] [Abstract][Full Text] [Related]
5. Effects of random external background stimulation on network synaptic stability after tetanization: a modeling study. Chao ZC; Bakkum DJ; Wagenaar DA; Potter SM Neuroinformatics; 2005; 3(3):263-80. PubMed ID: 16077162 [TBL] [Abstract][Full Text] [Related]
6. Learning rule of homeostatic synaptic scaling: presynaptic dependent or not. Liu JK Neural Comput; 2011 Dec; 23(12):3145-61. PubMed ID: 21919784 [TBL] [Abstract][Full Text] [Related]
7. An STDP training algorithm for a spiking neural network with dynamic threshold neurons. Strain TJ; McDaid LJ; McGinnity TM; Maguire LP; Sayers HM Int J Neural Syst; 2010 Dec; 20(6):463-80. PubMed ID: 21117270 [TBL] [Abstract][Full Text] [Related]
8. Event-driven simulations of a plastic, spiking neural network. Chen CC; Jasnow D Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031908. PubMed ID: 22060404 [TBL] [Abstract][Full Text] [Related]
9. A new synaptic plasticity rule for networks of spiking neurons. Swiercz W; Cios KJ; Staley K; Kurgan L; Accurso F; Sagel S IEEE Trans Neural Netw; 2006 Jan; 17(1):94-105. PubMed ID: 16526479 [TBL] [Abstract][Full Text] [Related]
10. A forecast-based STDP rule suitable for neuromorphic implementation. Davies S; Galluppi F; Rast AD; Furber SB Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500 [TBL] [Abstract][Full Text] [Related]
15. Self-organized dynamics in plastic neural networks: bistability and coherence. Kalitzin S; van Dijk BW; Spekreijse H Biol Cybern; 2000 Aug; 83(2):139-50. PubMed ID: 10966053 [TBL] [Abstract][Full Text] [Related]
16. A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks. Alemi A; Baldassi C; Brunel N; Zecchina R PLoS Comput Biol; 2015 Aug; 11(8):e1004439. PubMed ID: 26291608 [TBL] [Abstract][Full Text] [Related]
17. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking. Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559 [TBL] [Abstract][Full Text] [Related]
18. The spatiotemporal learning rule and its efficiency in separating spatiotemporal patterns. Tsukada M; Pan X Biol Cybern; 2005 Feb; 92(2):139-46. PubMed ID: 15696314 [TBL] [Abstract][Full Text] [Related]