BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 28182187)

  • 1. Multiscale modeling of plasmonic enhanced energy transfer and cavitation around laser-excited nanoparticles.
    Dagallier A; Boulais E; Boutopoulos C; Lachaine R; Meunier M
    Nanoscale; 2017 Mar; 9(9):3023-3032. PubMed ID: 28182187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational Design of Plasmonic Nanoparticles for Enhanced Cavitation and Cell Perforation.
    Lachaine R; Boutopoulos C; Lajoie PY; Boulais É; Meunier M
    Nano Lett; 2016 May; 16(5):3187-94. PubMed ID: 27048763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Picosecond-to-nanosecond dynamics of plasmonic nanobubbles from pump-probe spectral measurements of aqueous colloidal gold nanoparticles.
    Katayama T; Setoura K; Werner D; Miyasaka H; Hashimoto S
    Langmuir; 2014 Aug; 30(31):9504-13. PubMed ID: 25083945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasma mediated off-resonance plasmonic enhanced ultrafast laser-induced nanocavitation.
    Boulais E; Lachaine R; Meunier M
    Nano Lett; 2012 Sep; 12(9):4763-9. PubMed ID: 22845691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods for Generation and Detection of Nonstationary Vapor Nanobubbles Around Plasmonic Nanoparticles.
    Lukianova-Hleb EY; Lapotko DO
    Methods Mol Biol; 2017; 1530():165-192. PubMed ID: 28150203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ballistic heat transport in laser generated nano-bubbles.
    Lombard J; Biben T; Merabia S
    Nanoscale; 2016 Aug; 8(31):14870-6. PubMed ID: 27461058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanobubbles around plasmonic nanoparticles: Thermodynamic analysis.
    Lombard J; Biben T; Merabia S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043007. PubMed ID: 25974580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High fidelity visualization of multiscale dynamics of laser-induced bubbles in liquids containing gold nanoparticles.
    Bhuyan MK; Soleilhac A; Somayaji M; Itina TE; Antoine R; Stoian R
    Sci Rep; 2018 Jun; 8(1):9665. PubMed ID: 29941939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Dynamics Simulation Combined with Near-Field Electromagnetic Analysis for Ultrashort-Pulsed Light-Induced Plasmonic Nanobubbles.
    Dong Q; An W; Zhang Y
    Langmuir; 2024 Feb; 40(8):4198-4206. PubMed ID: 38355291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient photothermal spectra of plasmonic nanobubbles.
    Lukianova-Hleb EY; Sassaroli E; Jones A; Lapotko DO
    Langmuir; 2012 Mar; 28(10):4858-66. PubMed ID: 22339620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature determination of resonantly excited plasmonic branched gold nanoparticles by X-ray absorption spectroscopy.
    Van de Broek B; Grandjean D; Trekker J; Ye J; Verstreken K; Maes G; Borghs G; Nikitenko S; Lagae L; Bartic C; Temst K; Van Bael MJ
    Small; 2011 Sep; 7(17):2498-506. PubMed ID: 21744495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vapor and Gas-Bubble Growth Dynamics around Laser-Irradiated, Water-Immersed Plasmonic Nanoparticles.
    Wang Y; Zaytsev ME; The HL; Eijkel JC; Zandvliet HJ; Zhang X; Lohse D
    ACS Nano; 2017 Feb; 11(2):2045-2051. PubMed ID: 28088847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of laser-induced nanobubble formation mechanism in water.
    Jelenčič M; Orthaber U; Mur J; Petelin J; Petkovšek R
    Ultrason Sonochem; 2023 Oct; 99():106537. PubMed ID: 37531836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser pulse duration is critical for the generation of plasmonic nanobubbles.
    Lukianova-Hleb EY; Volkov AN; Lapotko DO
    Langmuir; 2014 Jul; 30(25):7425-34. PubMed ID: 24916057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell perforation mediated by plasmonic bubbles generated by a single near infrared femtosecond laser pulse.
    Boutopoulos C; Bergeron E; Meunier M
    J Biophotonics; 2016 Jan; 9(1-2):26-31. PubMed ID: 26199220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of number-density-dependent growth of plasmonic nanobubbles.
    Nakajima T; Wang X; Chatterjee S; Sakka T
    Sci Rep; 2016 Jun; 6():28667. PubMed ID: 27354184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface Bubble Growth in Plasmonic Nanoparticle Suspension.
    Zhang Q; Neal RD; Huang D; Neretina S; Lee E; Luo T
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26680-26687. PubMed ID: 32402195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interferometric time- and energy-resolved photoemission electron microscopy for few-femtosecond nanoplasmonic dynamics.
    Gliserin A; Chew SH; Choi S; Kim K; Hallinan DT; Oh JW; Kim S; Kim DE
    Rev Sci Instrum; 2019 Sep; 90(9):093904. PubMed ID: 31575236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.