These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28182849)

  • 1. Controlling the false discoveries in LASSO.
    Huang H
    Biometrics; 2017 Dec; 73(4):1102-1110. PubMed ID: 28182849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Order selection and sparsity in latent variable models via the ordered factor LASSO.
    Hui FKC; Tanaka E; Warton DI
    Biometrics; 2018 Dec; 74(4):1311-1319. PubMed ID: 29750847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Generally Efficient Targeted Minimum Loss Based Estimator based on the Highly Adaptive Lasso.
    van der Laan M
    Int J Biostat; 2017 Oct; 13(2):. PubMed ID: 29023235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The lasso for high dimensional regression with a possible change point.
    Lee S; Seo MH; Shin Y
    J R Stat Soc Series B Stat Methodol; 2016 Jan; 78(1):193-210. PubMed ID: 27656104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling the local false discovery rate in the adaptive Lasso.
    Sampson JN; Chatterjee N; Carroll RJ; Müller S
    Biostatistics; 2013 Sep; 14(4):653-66. PubMed ID: 23575212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient method to estimate the optimum regularization parameter in RLDA.
    Bakir D; James AP; Zollanvari A
    Bioinformatics; 2016 Nov; 32(22):3461-3468. PubMed ID: 27485443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Empirical extensions of the lasso penalty to reduce the false discovery rate in high-dimensional Cox regression models.
    Ternès N; Rotolo F; Michiels S
    Stat Med; 2016 Jul; 35(15):2561-73. PubMed ID: 26970107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An MM-Based Algorithm for ℓ1-Regularized Least-Squares Estimation With an Application to Ground Penetrating Radar Image Reconstruction.
    Ndoye M; Anderson JM; Greene DJ
    IEEE Trans Image Process; 2016 May; 25(5):2206-21. PubMed ID: 26800538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymptotic uncertainty of false discovery proportion.
    Mei M; Yu T; Jiang Y
    Biometrics; 2024 Jan; 80(1):. PubMed ID: 38497826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fused lasso algorithm for Cox' proportional hazards and binomial logit models with application to copy number profiles.
    Chaturvedi N; de Menezes RX; Goeman JJ
    Biom J; 2014 May; 56(3):477-92. PubMed ID: 24496763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matching a Distribution by Matching Quantiles Estimation.
    Sgouropoulos N; Yao Q; Yastremiz C
    J Am Stat Assoc; 2015 Apr; 110(510):742-759. PubMed ID: 26692592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leveraging independence in high-dimensional mixed linear regression.
    Wang N; Deng K; Mai Q; Zhang X
    Biometrics; 2024 Jul; 80(3):. PubMed ID: 39315604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clustering in linear-mixed models with a group fused lasso penalty.
    Heinzl F; Tutz G
    Biom J; 2014 Jan; 56(1):44-68. PubMed ID: 24249100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sparse inverse covariance estimation with the graphical lasso.
    Friedman J; Hastie T; Tibshirani R
    Biostatistics; 2008 Jul; 9(3):432-41. PubMed ID: 18079126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regularized estimation in the accelerated failure time model with high-dimensional covariates.
    Huang J; Ma S; Xie H
    Biometrics; 2006 Sep; 62(3):813-20. PubMed ID: 16984324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On Penalty Parameter Selection for Estimating Network Models.
    Wysocki AC; Rhemtulla M
    Multivariate Behav Res; 2021; 56(2):288-302. PubMed ID: 31672065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of fused graphical lasso to statistical inference for multiple sparse precision matrices.
    Zhang Q; Li L; Yang H
    PLoS One; 2024; 19(5):e0304264. PubMed ID: 38820407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Threshold selection for covariance estimation.
    Qiu Y; Liyanage JSS
    Biometrics; 2019 Sep; 75(3):895-905. PubMed ID: 30820943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exact Covariance Thresholding into Connected Components for Large-Scale Graphical Lasso.
    Mazumder R; Hastie T
    J Mach Learn Res; 2012 Mar; 13():781-794. PubMed ID: 25392704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sparse and Efficient Estimation for Partial Spline Models with Increasing Dimension.
    Cheng G; Zhang HH; Shang Z
    Ann Inst Stat Math; 2015 Feb; 67(1):93-127. PubMed ID: 25620808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.