BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28183187)

  • 21. In vitro analysis of the antibacterial effect of nanohydroxyapatite-ZnO composites.
    Grenho L; Monteiro FJ; Pia Ferraz M
    J Biomed Mater Res A; 2014 Oct; 102(10):3726-33. PubMed ID: 24288156
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon dioxide can inhibit biofilms formation and cellular properties of Shewanella putrefaciens at both 30 °C and 4 °C.
    Li P; Mei J; Xie J
    Food Res Int; 2022 Nov; 161():111781. PubMed ID: 36192877
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-assembled zinc oxide hierarchical structures with enhanced antibacterial properties from stacked chain-like zinc oxalate compounds.
    Patrinoiu G; Dumitru R; Culita DC; Munteanu C; Birjega R; Calderon-Moreno JM; Cucos A; Pelinescu D; Chifiriuc MC; Bleotu C; Carp O
    J Colloid Interface Sci; 2019 Sep; 552():258-270. PubMed ID: 31129297
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antimicrobial Effect of
    Xie Y; Zhang C; Mei J; Xie J
    Int J Mol Sci; 2023 Jul; 24(13):. PubMed ID: 37446243
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Superior antibacterial activity of zinc oxide/graphene oxide composites originating from high zinc concentration localized around bacteria.
    Wang YW; Cao A; Jiang Y; Zhang X; Liu JH; Liu Y; Wang H
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2791-8. PubMed ID: 24495147
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production.
    Lee JH; Kim YG; Cho MH; Lee J
    Microbiol Res; 2014 Dec; 169(12):888-96. PubMed ID: 24958247
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Zinc oxide nanoparticle suspensions and layer-by-layer coatings inhibit staphylococcal growth.
    McGuffie MJ; Hong J; Bahng JH; Glynos E; Green PF; Kotov NA; Younger JG; VanEpps JS
    Nanomedicine; 2016 Jan; 12(1):33-42. PubMed ID: 26515755
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anti-biofilm and antibacterial activities of zinc oxide nanoparticles against the oral opportunistic pathogens Rothia dentocariosa and Rothia mucilaginosa.
    Khan ST; Ahamed M; Musarrat J; Al-Khedhairy AA
    Eur J Oral Sci; 2014 Dec; 122(6):397-403. PubMed ID: 25311638
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of zirconium oxide and zinc oxide nanoparticles on physicochemical properties and antibiofilm activity of a calcium silicate-based material.
    Guerreiro-Tanomaru JM; Trindade-Junior A; Costa BC; da Silva GF; Drullis Cifali L; Basso Bernardi MI; Tanomaru-Filho M
    ScientificWorldJournal; 2014; 2014():975213. PubMed ID: 25431798
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Custom-made morphologies of ZnO nanostructured films templated by a poly(styrene-block-ethylene oxide) diblock copolymer obtained by a sol-gel technique.
    Sarkar K; Rawolle M; Herzig EM; Wang W; Buffet A; Roth SV; Müller-Buschbaum P
    ChemSusChem; 2013 Aug; 6(8):1414-24. PubMed ID: 23881752
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biological therapeutics of Pongamia pinnata coated zinc oxide nanoparticles against clinically important pathogenic bacteria, fungi and MCF-7 breast cancer cells.
    Malaikozhundan B; Vaseeharan B; Vijayakumar S; Pandiselvi K; Kalanjiam MA; Murugan K; Benelli G
    Microb Pathog; 2017 Mar; 104():268-277. PubMed ID: 28115262
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction of cellulose based ZnO nanocomposite films with antibacterial properties through one-step coagulation.
    Fu F; Li L; Liu L; Cai J; Zhang Y; Zhou J; Zhang L
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2597-606. PubMed ID: 25569533
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ε-Polylysine Inhibits
    Lan W; Zhang N; Liu S; Chen M; Xie J
    Molecules; 2019 Oct; 24(20):. PubMed ID: 31623152
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antibacterial activity and mechanism of slightly acidic electrolyzed water against Shewanella putrefaciens and Staphylococcus saprophytic.
    Liu L; Lan W; Wang Y; Xie J
    Biochem Biophys Res Commun; 2022 Feb; 592():44-50. PubMed ID: 35026604
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Candida tropicalis biofilm inhibition by ZnO nanoparticles and EDTA.
    Jothiprakasam V; Sambantham M; Chinnathambi S; Vijayaboopathi S
    Arch Oral Biol; 2017 Jan; 73():21-24. PubMed ID: 27653145
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties.
    Murariu M; Doumbia A; Bonnaud L; Dechief AL; Paint Y; Ferreira M; Campagne C; Devaux E; Dubois P
    Biomacromolecules; 2011 May; 12(5):1762-71. PubMed ID: 21466242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antibacterial Activity and Mechanism of Linalool against
    Guo F; Liang Q; Zhang M; Chen W; Chen H; Yun Y; Zhong Q; Chen W
    Molecules; 2021 Jan; 26(1):. PubMed ID: 33466475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothemally synthesized using different surface stabilizing agents.
    Stanković A; Dimitrijević S; Uskoković D
    Colloids Surf B Biointerfaces; 2013 Feb; 102():21-8. PubMed ID: 23010107
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biofilm formation to inhibition: Role of zinc oxide-based nanoparticles.
    Mahamuni-Badiger PP; Patil PM; Badiger MV; Patel PR; Thorat-Gadgil BS; Pandit A; Bohara RA
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110319. PubMed ID: 31923962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-Efficiency Near-Infrared Light Responsive Antibacterial System for Synergistic Ablation of Bacteria and Biofilm.
    Yu H; Xu X; Xie Z; Huang X; Lin L; Jiao Y; Li H
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):36947-36956. PubMed ID: 35929762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.