BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28183187)

  • 41. Antimicrobial Effect of Epigallocatechin Gallate Against Shewanella putrefaciens ATCC 8071: A Study Based on Cell Membrane and Biofilm.
    Pei J; Yu H; Qiu W; Mei J; Xie J
    Curr Microbiol; 2022 Aug; 79(10):297. PubMed ID: 35996024
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Achieving Antifingerprinting and Antibacterial Effects in Smart-Phone Panel Applications Using ZnO Thin Films without a Protective Layer.
    Choi HJ; Park BJ; Eom JH; Choi MJ; Yoon SG
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):997-1003. PubMed ID: 26691534
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection.
    Kishen A; Shi Z; Shrestha A; Neoh KG
    J Endod; 2008 Dec; 34(12):1515-20. PubMed ID: 19026885
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Zinc oxide nanostructure-modified textile and its application to biosensing, photocatalysis, and as antibacterial material.
    Hatamie A; Khan A; Golabi M; Turner AP; Beni V; Mak WC; Sadollahkhani A; Alnoor H; Zargar B; Bano S; Nur O; Willander M
    Langmuir; 2015 Oct; 31(39):10913-21. PubMed ID: 26372851
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface structure and nanomechanical properties of Shewanella putrefaciens bacteria at two pH values (4 and 10) determined by atomic force microscopy.
    Gaboriaud F; Bailet S; Dague E; Jorand F
    J Bacteriol; 2005 Jun; 187(11):3864-8. PubMed ID: 15901713
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A transcriptome analysis of the antibacterial mechanism of flavonoids from Sedum aizoon L. against Shewanella putrefaciens.
    Wang J; Chi Z; Zhao K; Wang H; Zhang X; Xu F; Shao X; Wei Y
    World J Microbiol Biotechnol; 2020 Jun; 36(7):94. PubMed ID: 32562062
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reduced Staphylococcus aureus proliferation and biofilm formation on zinc oxide nanoparticle PVC composite surfaces.
    Seil JT; Webster TJ
    Acta Biomater; 2011 Jun; 7(6):2579-84. PubMed ID: 21421087
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A study on the antibacterial activity of one-dimensional ZnO nanowire arrays: effects of the orientation and plane surface.
    Wang X; Yang F; Yang W; Yang X
    Chem Commun (Camb); 2007 Nov; (42):4419-21. PubMed ID: 17957306
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity.
    He W; Kim HK; Wamer WG; Melka D; Callahan JH; Yin JJ
    J Am Chem Soc; 2014 Jan; 136(2):750-7. PubMed ID: 24354568
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Morphology-directed synthesis of ZnO nanostructures and their antibacterial activity.
    Ramani M; Ponnusamy S; Muthamizhchelvan C; Cullen J; Krishnamurthy S; Marsili E
    Colloids Surf B Biointerfaces; 2013 May; 105():24-30. PubMed ID: 23352944
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Atmospheric cold plasma: A potential technology to control Shewanella putrefaciens in stored shrimp.
    Hu J; Huang W; Wang Y; Jin J; Li Y; Chen J; Zheng Y; Deng S
    Int J Food Microbiol; 2023 Apr; 390():110127. PubMed ID: 36806858
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging.
    Tankhiwale R; Bajpai SK
    Colloids Surf B Biointerfaces; 2012 Feb; 90():16-20. PubMed ID: 22015180
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of In doping on the properties and antibacterial activity of ZnO films prepared by spray pyrolysis.
    Manoharan C; Pavithra G; Dhanapandian S; Dhamodharan P
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():793-9. PubMed ID: 25997176
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced Anti-Infective Efficacy of ZnO Nanoreservoirs through a Combination of Intrinsic Anti-Biofilm Activity and Reinforced Innate Defense.
    Wang J; Zhou H; Guo G; Tan J; Wang Q; Tang J; Liu W; Shen H; Li J; Zhang X
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33609-33623. PubMed ID: 28884578
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural and optical properties of nanostructure CdZnO films.
    Gupta RK; Cavas M; Yakuphanoglu F
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Sep; 95():107-13. PubMed ID: 22617216
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cytometric patterns reveal growth states of Shewanella putrefaciens.
    Melzer S; Winter G; Jäger K; Hübschmann T; Hause G; Syrowatka F; Harms H; Tárnok A; Müller S
    Microb Biotechnol; 2015 May; 8(3):379-91. PubMed ID: 25185955
    [TBL] [Abstract][Full Text] [Related]  

  • 57. TiO
    Klinger-Strobel M; Makarewicz O; Pletz MW; Stallmach A; Lautenschläger C
    J Mater Sci Mater Med; 2016 Dec; 27(12):175. PubMed ID: 27752973
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7.
    Liu Y; He L; Mustapha A; Li H; Hu ZQ; Lin M
    J Appl Microbiol; 2009 Oct; 107(4):1193-201. PubMed ID: 19486396
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of reduced graphene oxide-hybridized ZnO thin films on the photoinactivation of Staphylococcus aureus and Salmonella enterica serovar Typhi.
    Teh SJ; Yeoh SL; Lee KM; Lai CW; Abdul Hamid SB; Thong KL
    J Photochem Photobiol B; 2016 Aug; 161():25-33. PubMed ID: 27203568
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials.
    Abdulkareem EH; Memarzadeh K; Allaker RP; Huang J; Pratten J; Spratt D
    J Dent; 2015 Dec; 43(12):1462-9. PubMed ID: 26497232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.