These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 28183596)

  • 1. A numerical study on the application of the functionally graded materials in the stent design.
    Khosravi A; Bahreinizad H; Bani MS; Karimi A
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():182-188. PubMed ID: 28183596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing through computational modeling to reduce dogboning of functionally graded coronary stent material.
    Khosravi A; Akbari A; Bahreinizad H; Salimi Bani M; Karimi A
    J Mater Sci Mater Med; 2017 Aug; 28(9):142. PubMed ID: 28819891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-objective optimization of coronary stent using Kriging surrogate model.
    Li H; Gu J; Wang M; Zhao D; Li Z; Qiao A; Zhu B
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):148. PubMed ID: 28155700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design optimization of stent and its dilatation balloon using kriging surrogate model.
    Li H; Liu T; Wang M; Zhao D; Qiao A; Wang X; Gu J; Li Z; Zhu B
    Biomed Eng Online; 2017 Jan; 16(1):13. PubMed ID: 28086895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suggestion of potential stent design parameters to reduce restenosis risk driven by foreshortening or dogboning due to non-uniform balloon-stent expansion.
    Lim D; Cho SK; Park WP; Kristensson A; Ko JY; Al-Hassani ST; Kim HS
    Ann Biomed Eng; 2008 Jul; 36(7):1118-29. PubMed ID: 18437572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element analysis and stent design: Reduction of dogboning.
    De Beule M; Van Impe R; Verhegghe B; Segers P; Verdonck P
    Technol Health Care; 2006; 14(4-5):233-41. PubMed ID: 17065746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of material, coating, design and plaque composition on stent deployment inside a stenotic artery--finite element simulation.
    Schiavone A; Zhao LG; Abdel-Wahab AA
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():479-88. PubMed ID: 25063145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of stents exhibiting negative Poisson's ratio effect.
    Raamachandran J; Jayavenkateshwaran K
    Comput Methods Biomech Biomed Engin; 2007 Aug; 10(4):245-55. PubMed ID: 17671858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational fluid-structure interaction model to predict the biomechanical properties of the artificial functionally graded aorta.
    Khosravi A; Bani MS; Bahreinizade H; Karimi A
    Biosci Rep; 2016 Dec; 36(6):. PubMed ID: 27836981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical behavior of coronary stents investigated through the finite element method.
    Migliavacca F; Petrini L; Colombo M; Auricchio F; Pietrabissa R
    J Biomech; 2002 Jun; 35(6):803-11. PubMed ID: 12021000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element simulation and testing of cobalt-chromium stent: a parametric study on radial strength, recoil, foreshortening, and dogboning.
    Kumar A; Bhatnagar N
    Comput Methods Biomech Biomed Engin; 2021 Feb; 24(3):245-259. PubMed ID: 33021106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method.
    Wang WQ; Liang DK; Yang DZ; Qi M
    J Biomech; 2006; 39(1):21-32. PubMed ID: 16271584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical Analysis for Non-Uniformity of Balloon-Expandable Stent Deployment Driven by Dogboning and Foreshortening.
    Rahinj GB; Chauhan HS; Sirivella ML; Satyanarayana MV; Ramanan L
    Cardiovasc Eng Technol; 2022 Apr; 13(2):247-264. PubMed ID: 34431035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patient-specific Finite Element Model of Coronary Artery Stenting.
    Razaghi R; Karimi A; Taheri RA
    Curr Pharm Des; 2018; 24(37):4492-4502. PubMed ID: 30514186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue prolapse and stresses in stented coronary arteries: A computer model for multi-layer atherosclerotic plaque.
    Hajiali Z; Dabagh M; Debusschere N; De Beule M; Jalali P
    Comput Biol Med; 2015 Nov; 66():39-46. PubMed ID: 26378501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Computational Study of Mechanical Performance of Bioresorbable Polymeric Stents with Design Variations.
    Qiu TY; Zhao LG; Song M
    Cardiovasc Eng Technol; 2019 Mar; 10(1):46-60. PubMed ID: 30536211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Design optimization of endovascular stent by finite element method].
    Wang W; Wang L; Yang D; Qi M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):372-7. PubMed ID: 18610625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental-nonlinear finite element study of a balloon expandable stent inside a realistic stenotic human coronary artery to investigate plaque and arterial wall injury.
    Karimi A; Razaghi R; Shojaei A; Navidbakhsh M
    Biomed Tech (Berl); 2015 Dec; 60(6):593-602. PubMed ID: 25870956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the stent expansion in a stenosed artery using finite element method: application to stent versus stent study.
    Imani SM; Goudarzi AM; Ghasemi SE; Kalani A; Mahdinejad J
    Proc Inst Mech Eng H; 2014 Oct; 228(10):996-1004. PubMed ID: 25406228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Research on the coupling expansion deformation behavior of coronary stainless steel stent in vitro].
    Wang W; Feng H; Wang X; Chen Y; Zhang R
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Oct; 30(5):1027-32, 1062. PubMed ID: 24459965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.