These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 28183628)

  • 1. Transdermal delivery of insulin with bioceramic composite microneedles fabricated by gelatin and hydroxyapatite.
    Yu W; Jiang G; Liu D; Li L; Tong Z; Yao J; Kong X
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():425-428. PubMed ID: 28183628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin.
    Yu W; Jiang G; Liu D; Li L; Chen H; Liu Y; Huang Q; Tong Z; Yao J; Kong X
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():725-734. PubMed ID: 27987766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microneedles fabricated from alginate and maltose for transdermal delivery of insulin on diabetic rats.
    Zhang Y; Jiang G; Yu W; Liu D; Xu B
    Mater Sci Eng C Mater Biol Appl; 2018 Apr; 85():18-26. PubMed ID: 29407146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats.
    Ling MH; Chen MC
    Acta Biomater; 2013 Nov; 9(11):8952-61. PubMed ID: 23816646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin.
    Liu S; Jin MN; Quan YS; Kamiyama F; Katsumi H; Sakane T; Yamamoto A
    J Control Release; 2012 Aug; 161(3):933-41. PubMed ID: 22634072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled Delivery of Insulin Using Rapidly Separating Microneedles Fabricated from Genipin-Crosslinked Gelatin.
    Chen BZ; Ashfaq M; Zhu DD; Zhang XP; Guo XD
    Macromol Rapid Commun; 2018 Oct; 39(20):e1800075. PubMed ID: 29722090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of composite microneedles integrated with insulin-loaded CaCO
    Liu D; Yu B; Jiang G; Yu W; Zhang Y; Xu B
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():180-188. PubMed ID: 29853081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly-γ-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin.
    Chen MC; Ling MH; Kusuma SJ
    Acta Biomater; 2015 Sep; 24():106-16. PubMed ID: 26102333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermosensitive hydrogel microneedles for controlled transdermal drug delivery.
    Li JY; Feng YH; He YT; Hu LF; Liang L; Zhao ZQ; Chen BZ; Guo XD
    Acta Biomater; 2022 Nov; 153():308-319. PubMed ID: 36055607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic evolution of a porous hydroxyapatite-poly(vinylalcohol)-gelatin composite.
    Nayar S; Sinha A
    Colloids Surf B Biointerfaces; 2004 May; 35(1):29-32. PubMed ID: 15261052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of Rapidly Separable Microneedles for Transdermal Delivery of Metformin on Diabetic Rats.
    Liu T; Jiang G; Song G; Sun Y; Zhang X; Zeng Z
    J Pharm Sci; 2021 Aug; 110(8):3004-3010. PubMed ID: 33878323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradable Gelatin Methacryloyl Microneedles for Transdermal Drug Delivery.
    Luo Z; Sun W; Fang J; Lee K; Li S; Gu Z; Dokmeci MR; Khademhosseini A
    Adv Healthc Mater; 2019 Feb; 8(3):e1801054. PubMed ID: 30565887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic-inorganic interaction between hydroxyapatite and gelatin with the aging of gelatin in aqueous phosphoric acid solution.
    Chang MC
    J Mater Sci Mater Med; 2008 Nov; 19(11):3411-8. PubMed ID: 18563537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin.
    Yu W; Jiang G; Zhang Y; Liu D; Xu B; Zhou J
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():187-196. PubMed ID: 28866156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of hydroxyapatite/gelatin nanocomposite using polyacrylamide.
    Chang MC; Kim UK; Douglas WH
    J Biomater Sci Polym Ed; 2009; 20(3):363-75. PubMed ID: 19192361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formulation of two-layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice.
    Lee IC; Lin WM; Shu JC; Tsai SW; Chen CH; Tsai MT
    J Biomed Mater Res A; 2017 Jan; 105(1):84-93. PubMed ID: 27539509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transdermal delivery of insulin from a novel biphasic lipid system in diabetic rats.
    King MJ; Badea I; Solomon J; Kumar P; Gaspar KJ; Foldvari M
    Diabetes Technol Ther; 2002; 4(4):479-88. PubMed ID: 12396742
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Tort S; Mutlu Agardan NB; Han D; Steckl AJ
    J Microencapsul; 2020 Nov; 37(7):517-527. PubMed ID: 32783663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of novel-shaped microneedles to overcome the disadvantages of solid microneedles for the transdermal delivery of insulin.
    Mizuno Y; Takasawa K; Hanada T; Nakamura K; Yamada K; Tsubaki H; Hara M; Tashiro Y; Matsuo M; Ito T; Hikima T
    Biomed Microdevices; 2021 Jul; 23(3):38. PubMed ID: 34287717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transdermal delivery of insulin using microneedles in vivo.
    Martanto W; Davis SP; Holiday NR; Wang J; Gill HS; Prausnitz MR
    Pharm Res; 2004 Jun; 21(6):947-52. PubMed ID: 15212158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.