These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 28183689)

  • 1. Game-Based Rehabilitation for Myoelectric Prosthesis Control.
    Prahm C; Vujaklija I; Kayali F; Purgathofer P; Aszmann OC
    JMIR Serious Games; 2017 Feb; 5(1):e3. PubMed ID: 28183689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PlayBionic: Game-Based Interventions to Encourage Patient Engagement and Performance in Prosthetic Motor Rehabilitation.
    Prahm C; Kayali F; Sturma A; Aszmann O
    PM R; 2018 Nov; 10(11):1252-1260. PubMed ID: 30503232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Video Game-Based Rehabilitation Approach for Individuals Who Have Undergone Upper Limb Amputation: Case-Control Study.
    Hashim NA; Abd Razak NA; Gholizadeh H; Abu Osman NA
    JMIR Serious Games; 2021 Feb; 9(1):e17017. PubMed ID: 33538698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Smart Rehab: App-based rehabilitation training for upper extremity amputees - Case Report].
    Prahm C; Sturma A; Kayali F; Mörth E; Aszmann O
    Handchir Mikrochir Plast Chir; 2018 Dec; 50(6):425-432. PubMed ID: 30620981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erratum.
    Mult Scler; 2016 Oct; 22(12):NP9-NP11. PubMed ID: 26041800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. User training for machine learning controlled upper limb prostheses: a serious game approach.
    Kristoffersen MB; Franzke AW; Bongers RM; Wand M; Murgia A; van der Sluis CK
    J Neuroeng Rehabil; 2021 Feb; 18(1):32. PubMed ID: 33579326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upper limb muscle activation during sports video gaming of persons with spinal cord injury.
    Jaramillo JP; Johanson ME; Kiratli BJ
    J Spinal Cord Med; 2019 Jan; 42(1):77-85. PubMed ID: 29616887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acceptability of a Mobile Phone-Based Augmented Reality Game for Rehabilitation of Patients With Upper Limb Deficits from Stroke: Case Study.
    LaPiana N; Duong A; Lee A; Alschitz L; Silva RML; Early J; Bunnell A; Mourad P
    JMIR Rehabil Assist Technol; 2020 Sep; 7(2):e17822. PubMed ID: 32876580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mobile, Game-Based Training for Myoelectric Prosthesis Control.
    Winslow BD; Ruble M; Huber Z
    Front Bioeng Biotechnol; 2018; 6():94. PubMed ID: 30050900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer.
    van Dijk L; van der Sluis CK; van Dijk HW; Bongers RM
    PLoS One; 2016; 11(8):e0160817. PubMed ID: 27556154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competitive and cooperative arm rehabilitation games played by a patient and unimpaired person: effects on motivation and exercise intensity.
    Goršič M; Cikajlo I; Novak D
    J Neuroeng Rehabil; 2017 Mar; 14(1):23. PubMed ID: 28330504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enabling More Accessible MS Rehabilitation Training Using Virtual Reality.
    Soomal HK; Poyade M; Rea PM; Paul L
    Adv Exp Med Biol; 2020; 1262():95-114. PubMed ID: 32613581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Task-Oriented Gaming for Transfer to Prosthesis Use.
    van Dijk L; van der Sluis CK; van Dijk HW; Bongers RM
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1384-1394. PubMed ID: 26625419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serious Gaming Technology in Upper Extremity Rehabilitation: Scoping Review.
    Koutsiana E; Ladakis I; Fotopoulos D; Chytas A; Kilintzis V; Chouvarda I
    JMIR Serious Games; 2020 Dec; 8(4):e19071. PubMed ID: 33306029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upbeat: Augmented Reality-Guided Dancing for Prosthetic Rehabilitation of Upper Limb Amputees.
    Melero M; Hou A; Cheng E; Tayade A; Lee SC; Unberath M; Navab N
    J Healthc Eng; 2019; 2019():2163705. PubMed ID: 31015903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis.
    Gauthier LV; Kane C; Borstad A; Strahl N; Uswatte G; Taub E; Morris D; Hall A; Arakelian M; Mark V
    BMC Neurol; 2017 Jun; 17(1):109. PubMed ID: 28595611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The feasibility, acceptability and preliminary efficacy of a low-cost, virtual-reality based, upper-limb stroke rehabilitation device: a mixed methods study.
    Warland A; Paraskevopoulos I; Tsekleves E; Ryan J; Nowicky A; Griscti J; Levings H; Kilbride C
    Disabil Rehabil; 2019 Sep; 41(18):2119-2134. PubMed ID: 29644897
    [No Abstract]   [Full Text] [Related]  

  • 18. Game-based interventions for neuropsychological assessment, training and rehabilitation: Which game-elements to use? A systematic review.
    Ferreira-Brito F; Fialho M; Virgolino A; Neves I; Miranda AC; Sousa-Santos N; Caneiras C; Carriço L; Verdelho A; Santos O
    J Biomed Inform; 2019 Oct; 98():103287. PubMed ID: 31518700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing Voluntary Myoelectric Training Time Through Game Design.
    Garske C; Dyson M; Dupan S; Morgan G; Nazarpour K
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2549-2556. PubMed ID: 36054389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The development of a myoelectric training tool for above-elbow amputees.
    Dawson MR; Fahimi F; Carey JP
    Open Biomed Eng J; 2012; 6():5-15. PubMed ID: 22383905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.