BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 2818444)

  • 21. Spontaneously hypertensive rat resistance artery structure related to myogenic and mechanical properties.
    Bund SJ
    Clin Sci (Lond); 2001 Oct; 101(4):385-93. PubMed ID: 11566076
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical properties of rat cerebral arteries as studied by a sensitive device for recording of mechanical activity in isolated small blood vessels.
    Högestätt ED; Andersson KE; Edvinsson L
    Acta Physiol Scand; 1983 Jan; 117(1):49-61. PubMed ID: 6858705
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomechanical and morphometric properties of the arterial wall referenced to the zero-stress state in experimental diabetes.
    Zhao J; Lu X; Zhuang F; Gregersen H
    Biorheology; 2000; 37(5-6):385-400. PubMed ID: 11204544
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Passive elastic properties of the rat aorta.
    Weizsäcker HW; Kampp TD
    Biomed Tech (Berl); 1990 Oct; 35(10):224-34. PubMed ID: 2285771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Passive biaxial mechanical response of aged human iliac arteries.
    Schulze-Bauer CA; Mörth C; Holzapfel GA
    J Biomech Eng; 2003 Jun; 125(3):395-406. PubMed ID: 12929245
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arterial wall properties and dietary atherosclerosis in the racing greyhound.
    Cox RH; Detweiler DK
    Am J Physiol; 1979 Jun; 236(6):H790-7. PubMed ID: 443441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Large artery remodeling during aging: biaxial passive and active stiffness.
    Gaballa MA; Jacob CT; Raya TE; Liu J; Simon B; Goldman S
    Hypertension; 1998 Sep; 32(3):437-43. PubMed ID: 9740608
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differences in inositol phosphate production in rat tail artery and thoracic aorta.
    Labelle EF; Murray BM
    J Cell Physiol; 1990 Sep; 144(3):391-400. PubMed ID: 2391374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of arterial wall mechanics in normotensive and spontaneously hypertensive rats.
    Cox RH
    Am J Physiol; 1979 Aug; 237(2):H159-67. PubMed ID: 464107
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simulated microgravity effects on the rat carotid and femoral arteries: role of contractile protein expression and mechanical properties of the vessel wall.
    Hwang S; Shelkovnikov SA; Purdy RE
    J Appl Physiol (1985); 2007 Apr; 102(4):1595-603. PubMed ID: 17218426
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of chronic dihydropyridine (isradipine) on the large arterial walls of spontaneously hypertensive rats.
    Levy BI; Duriez M; Phillipe M; Poitevin P; Michel JB
    Circulation; 1994 Dec; 90(6):3024-33. PubMed ID: 7994851
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of anisotropic elastic properties of the arteries by exponential and polynomial strain energy functions.
    Hudetz AG; Monos E
    Acta Physiol Acad Sci Hung; 1981; 57(2):111-22. PubMed ID: 7315373
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The perivascular environment along the vertebral artery governs segment-specific structural and mechanical properties.
    Zhou B; Alshareef M; Prim D; Collins M; Kempner M; Hartstone-Rose A; Eberth JF; Rachev A; Shazly T
    Acta Biomater; 2016 Nov; 45():286-295. PubMed ID: 27612958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigating the role of smooth muscle cells in large elastic arteries: a finite element analysis.
    Murtada SI; Holzapfel GA
    J Theor Biol; 2014 Oct; 358():1-10. PubMed ID: 24813071
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arterial wall mechanics and composition and the effects of smooth muscle activation.
    Cox RH
    Am J Physiol; 1975 Sep; 229(3):807-12. PubMed ID: 1211473
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Length-tension relationship of vascular smooth muscle in single arterioles.
    Davis MJ; Gore RW
    Am J Physiol; 1989 Mar; 256(3 Pt 2):H630-40. PubMed ID: 2923231
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A theoretical study of mechanical stability of arteries.
    Rachev A
    J Biomech Eng; 2009 May; 131(5):051006. PubMed ID: 19388776
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contribution of collagen, elastin, and smooth muscle to in vivo human brachial artery wall stress and elastic modulus.
    Bank AJ; Wang H; Holte JE; Mullen K; Shammas R; Kubo SH
    Circulation; 1996 Dec; 94(12):3263-70. PubMed ID: 8989139
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanics of caudal artery relaxation in control and hypertensive rats.
    Packer CS; Stephens NL
    Can J Physiol Pharmacol; 1985 Mar; 63(3):209-13. PubMed ID: 3986705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Reactivity of blood vessels: the role of mechanical stimulation and initial tone].
    Dvoretskiĭ DP; Osadchiĭ LI
    Izv Akad Nauk Ser Biol; 2000; (2):221-9. PubMed ID: 10780115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.