These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 28185293)

  • 1. Assessing frost damages using dynamic models in walnut trees: exposure rather than vulnerability controls frost risks.
    Guillaume C; Isabelle C; Marc B; Thierry A
    Plant Cell Environ; 2018 May; 41(5):1008-1021. PubMed ID: 28185293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are budburst dates, dormancy and cold acclimation in walnut trees (Juglans regia L.) under mainly genotypic or environmental control?
    Charrier G; Bonhomme M; Lacointe A; Améglio T
    Int J Biometeorol; 2011 Nov; 55(6):763-74. PubMed ID: 21805380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frost hardiness in walnut trees (Juglans regia L.): how to link physiology and modelling?
    Charrier G; Poirier M; Bonhomme M; Lacointe A; Améglio T
    Tree Physiol; 2013 Nov; 33(11):1229-41. PubMed ID: 24271086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Modeling of Carbon Metabolism During the Dormant Period Accurately Predicts the Changes in Frost Hardiness in Walnut Trees
    Charrier G; Lacointe A; Améglio T
    Front Plant Sci; 2018; 9():1746. PubMed ID: 30568664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A semi-physiological model of cold hardening and dehardening in walnut stem.
    Poirier M; Lacointe A; Améglio T
    Tree Physiol; 2010 Dec; 30(12):1555-69. PubMed ID: 21030404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic modeling of stem water content during the dormant period in walnut trees.
    Charrier G; Améglio T
    Tree Physiol; 2024 Feb; 44(1):. PubMed ID: 37847599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frost hardiness of tree species is independent of phenology and macroclimatic niche.
    Hofmann M; Bruelheide H
    J Biosci; 2015 Mar; 40(1):147-57. PubMed ID: 25740149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate warming and the risk of frost damage to boreal forest trees: identification of critical ecophysiological traits.
    Hänninen H
    Tree Physiol; 2006 Jul; 26(7):889-98. PubMed ID: 16585034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frost hardening and dehardening potential in temperate trees from winter to budburst.
    Vitra A; Lenz A; Vitasse Y
    New Phytol; 2017 Oct; 216(1):113-123. PubMed ID: 28737248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The early bud gets the cold: Diverging spring phenology drives exposure to late frost in a Picea mariana [(Mill.) BSP] common garden.
    Mura C; Buttò V; Silvestro R; Deslauriers A; Charrier G; Raymond P; Rossi S
    Physiol Plant; 2022 Nov; 174(6):e13798. PubMed ID: 36251716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Winter frost resistance of Pinus cembra measured in situ at the alpine timberline as affected by temperature conditions.
    Buchner O; Neuner G
    Tree Physiol; 2011 Nov; 31(11):1217-27. PubMed ID: 22011966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Winter embolism, mechanisms of xylem hydraulic conductivity recovery and springtime growth patterns in walnut and peach trees.
    Améglio T; Bodet C; Lacointe A; Cochard H
    Tree Physiol; 2002 Dec; 22(17):1211-20. PubMed ID: 12464574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of thawing time, cooling rate and boron nutrition on freezing point of the primordial shoot in norway spruce buds.
    Räisänen M; Repo T; Lehto T
    Ann Bot; 2006 Apr; 97(4):593-9. PubMed ID: 16464880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of differential thermal analysis in determining the critical temperatures of sweet cherry (Prunus avium L.) flower buds at different stages of bud burst.
    Kaya O; Kose C; Sahin M
    Int J Biometeorol; 2021 Jul; 65(7):1125-1135. PubMed ID: 33611681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climate change and spring frost damages for sweet cherries in Germany.
    Chmielewski FM; Götz KP; Weber KC; Moryson S
    Int J Biometeorol; 2018 Feb; 62(2):217-228. PubMed ID: 28965141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the impact of frost resistances on potential altitudinal limit of trees.
    Charrier G; Cochard H; Améglio T
    Tree Physiol; 2013 Sep; 33(9):891-902. PubMed ID: 24052567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conducting Field Trials for Frost Tolerance Breeding in Cereals.
    Cattivelli L; Crosatti C
    Methods Mol Biol; 2020; 2156():43-52. PubMed ID: 32607974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limited alpine climatic warming and modeled phenology advancement for three alpine species in the Northeast United States.
    Kimball KD; Davis ML; Weihrauch DM; Murray GL; Rancourt K
    Am J Bot; 2014 Sep; 101(9):1437-46. PubMed ID: 25253704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. European deciduous trees exhibit similar safety margins against damage by spring freeze events along elevational gradients.
    Lenz A; Hoch G; Vitasse Y; Körner C
    New Phytol; 2013 Dec; 200(4):1166-75. PubMed ID: 23952607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenological calendar in some walnut genotypes grown in Romania and its correlations with air temperature.
    Cosmulescu S; Bîrsanu Ionescu M
    Int J Biometeorol; 2018 Nov; 62(11):2007-2013. PubMed ID: 30209614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.