These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28185424)

  • 1. Deconstruction of complex protein signaling switches: a roadmap toward engineering higher-order gene regulators.
    Davey JA; Wilson CJ
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Nov; 9(6):. PubMed ID: 28185424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomolecular Systems Engineering: Unlocking the Potential of Engineered Allostery via the Lactose Repressor Topology.
    Groseclose TM; Rondon RE; Hersey AN; Milner PT; Kim D; Zhang F; Realff MJ; Wilson CJ
    Annu Rev Biophys; 2021 May; 50():303-321. PubMed ID: 33606944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-quantum dot nanohybrids for bioanalytical applications.
    Lee JY; Kim JS; Park JC; Nam YS
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2016; 8(2):178-90. PubMed ID: 25854126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional programming using engineered systems of transcription factors and genetic architectures.
    Rondon RE; Groseclose TM; Short AE; Wilson CJ
    Nat Commun; 2019 Oct; 10(1):4784. PubMed ID: 31636266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering allosteric transcription factors guided by the LacI topology.
    Hersey AN; Kay VE; Lee S; Realff MJ; Wilson CJ
    Cell Syst; 2023 Aug; 14(8):645-655. PubMed ID: 37591203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fourteen Ways to Reroute Cooperative Communication in the Lactose Repressor: Engineering Regulatory Proteins with Alternate Repressive Functions.
    Richards DH; Meyer S; Wilson CJ
    ACS Synth Biol; 2017 Jan; 6(1):6-12. PubMed ID: 27598336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering alternate cooperative-communications in the lactose repressor protein scaffold.
    Meyer S; Ramot R; Kishore Inampudi K; Luo B; Lin C; Amere S; Wilson CJ
    Protein Eng Des Sel; 2013 Jun; 26(6):433-43. PubMed ID: 23587523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand-induced conformational changes and conformational dynamics in the solution structure of the lactose repressor protein.
    Taraban M; Zhan H; Whitten AE; Langley DB; Matthews KS; Swint-Kruse L; Trewhella J
    J Mol Biol; 2008 Feb; 376(2):466-81. PubMed ID: 18164724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered protein switches for exogenous control of gene expression.
    Spisak S; Ostermeier M
    Biochem Soc Trans; 2020 Oct; 48(5):2205-2212. PubMed ID: 33079167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mammalian synthetic biology: engineering of sophisticated gene networks.
    Greber D; Fussenegger M
    J Biotechnol; 2007 Jul; 130(4):329-45. PubMed ID: 17602777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolving Lac repressor for enhanced inducibility.
    Satya Lakshmi O; Rao NM
    Protein Eng Des Sel; 2009 Feb; 22(2):53-8. PubMed ID: 19029094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering a New Class of Anti-LacI Transcription Factors with Alternate DNA Recognition.
    Rondon RE; Wilson CJ
    ACS Synth Biol; 2019 Feb; 8(2):307-317. PubMed ID: 30601657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amylose engineering: phosphorylase-catalyzed polymerization of functional saccharide primers for glycobiomaterials.
    Nishimura T; Akiyoshi K
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Mar; 9(2):. PubMed ID: 27506150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered microbial biosensors based on bacterial two-component systems as synthetic biotechnology platforms in bioremediation and biorefinery.
    Ravikumar S; Baylon MG; Park SJ; Choi JI
    Microb Cell Fact; 2017 Apr; 16(1):62. PubMed ID: 28410609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex coacervate-based materials for biomedicine.
    Blocher WC; Perry SL
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2017 Jul; 9(4):. PubMed ID: 27813275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide nanostructures in biomedical technology.
    Feyzizarnagh H; Yoon DY; Goltz M; Kim DS
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2016 Sep; 8(5):730-43. PubMed ID: 26846352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional consequences of exchanging domains between LacI and PurR are mediated by the intervening linker sequence.
    Tungtur S; Egan SM; Swint-Kruse L
    Proteins; 2007 Jul; 68(1):375-88. PubMed ID: 17436321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid and high-throughput construction of microbial cell-factories with regulatory noncoding RNAs.
    Chaudhary AK; Na D; Lee EY
    Biotechnol Adv; 2015 Nov; 33(6 Pt 1):914-30. PubMed ID: 26027891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticle-based luminescent probes for intracellular sensing and imaging of pH.
    Schäferling M
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2016 May; 8(3):378-413. PubMed ID: 26395962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein and RNA engineering to customize microbial molecular reporting.
    Gredell JA; Frei CS; Cirino PC
    Biotechnol J; 2012 Apr; 7(4):477-99. PubMed ID: 22031507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.