These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 28185458)
1. Mutant Potential Ubiquitination Sites in Dur3p Enhance the Urea and Ethyl Carbamate Reduction in a Model Rice Wine System. Zhang P; Du G; Zou H; Xie G; Chen J; Shi Z; Zhou J J Agric Food Chem; 2017 Mar; 65(8):1641-1648. PubMed ID: 28185458 [TBL] [Abstract][Full Text] [Related]
2. Metabolic engineering of Saccharomyces cerevisiae using the CRISPR/Cas9 system to minimize ethyl carbamate accumulation during Chinese rice wine fermentation. Wu D; Xie W; Li X; Cai G; Lu J; Xie G Appl Microbiol Biotechnol; 2020 May; 104(10):4435-4444. PubMed ID: 32215703 [TBL] [Abstract][Full Text] [Related]
3. Adaptive Evolution Relieves Nitrogen Catabolite Repression and Decreases Urea Accumulation in Cultures of the Chinese Rice Wine Yeast Strain Saccharomyces cerevisiae XZ-11. Zhang W; Cheng Y; Li Y; Du G; Xie G; Zou H; Zhou J; Chen J J Agric Food Chem; 2018 Aug; 66(34):9061-9069. PubMed ID: 29882665 [TBL] [Abstract][Full Text] [Related]
4. Constitutive expression of the DUR1,2 gene in an industrial yeast strain to minimize ethyl carbamate production during Chinese rice wine fermentation. Wu D; Li X; Lu J; Chen J; Zhang L; Xie G FEMS Microbiol Lett; 2016 Jan; 363(1):fnv214. PubMed ID: 26538578 [TBL] [Abstract][Full Text] [Related]
5. Metabolic engineering of the regulators in nitrogen catabolite repression to reduce the production of ethyl carbamate in a model rice wine system. Zhao X; Zou H; Fu J; Zhou J; Du G; Chen J Appl Environ Microbiol; 2014 Jan; 80(1):392-8. PubMed ID: 24185848 [TBL] [Abstract][Full Text] [Related]
6. Decreased ethyl carbamate generation during Chinese rice wine fermentation by disruption of CAR1 in an industrial yeast strain. Wu D; Li X; Shen C; Lu J; Chen J; Xie G Int J Food Microbiol; 2014 Jun; 180():19-23. PubMed ID: 24769164 [TBL] [Abstract][Full Text] [Related]
7. Functional enhancement of Sake yeast strains to minimize the production of ethyl carbamate in Sake wine. Dahabieh MS; Husnik JI; Van Vuuren HJ J Appl Microbiol; 2010 Sep; 109(3):963-73. PubMed ID: 20408912 [TBL] [Abstract][Full Text] [Related]
8. Metabolic engineering of arginine permeases to reduce the formation of urea in Saccharomyces cerevisiae. Zhang P; Hu X World J Microbiol Biotechnol; 2018 Mar; 34(3):47. PubMed ID: 29536194 [TBL] [Abstract][Full Text] [Related]
9. Reduced production of ethyl carbamate for wine fermentation by deleting CAR1 in Saccharomyces cerevisiae. Guo XW; Li YZ; Guo J; Wang Q; Huang SY; Chen YF; Du LP; Xiao DG J Ind Microbiol Biotechnol; 2016 May; 43(5):671-9. PubMed ID: 26831650 [TBL] [Abstract][Full Text] [Related]
10. Chinese Yellow Rice Wine Processing with Reduced Ethyl Carbamate Formation by Deleting Transcriptional Regulator Dal80p in Wei T; Jiao Z; Hu J; Lou H; Chen Q Molecules; 2020 Aug; 25(16):. PubMed ID: 32781689 [TBL] [Abstract][Full Text] [Related]
11. [Effects of transporter Agp1p ubiquitination on nitrogen utilization in Saccharomyces cerevisiae]. Li Y; Lv Y; Zhou J; Du G; Chen J Wei Sheng Wu Xue Bao; 2015 May; 55(5):570-8. PubMed ID: 26259481 [TBL] [Abstract][Full Text] [Related]
12. Nitrogen regulation involved in the accumulation of urea in Saccharomyces cerevisiae. Zhao X; Zou H; Fu J; Chen J; Zhou J; Du G Yeast; 2013 Nov; 30(11):437-47. PubMed ID: 23996237 [TBL] [Abstract][Full Text] [Related]
13. Reduced production of Ethyl Carbamate in wine by regulating the accumulation of arginine in Saccharomyces cerevisiae. Gao M; Li W; Fan L; Wei C; Yu S; Chen R; Ma L; Du L; Zhang H; Yang W J Biotechnol; 2024 Apr; 385():65-74. PubMed ID: 38503366 [TBL] [Abstract][Full Text] [Related]
14. The role of GAP1 gene in the nitrogen metabolism of Saccharomyces cerevisiae during wine fermentation. Chiva R; Baiges I; Mas A; Guillamon JM J Appl Microbiol; 2009 Jul; 107(1):235-44. PubMed ID: 19302302 [TBL] [Abstract][Full Text] [Related]
15. Metabolic Engineering of Four GATA Factors to Reduce Urea and Ethyl Carbamate Formation in a Model Rice Wine System. Zhang P; Li B; Wen P; Wang P; Yang Y; Chen Q; Chang Y; Hu X J Agric Food Chem; 2018 Oct; 66(41):10881-10889. PubMed ID: 30246534 [TBL] [Abstract][Full Text] [Related]
16. Application of bamboo leaves extract to Chinese yellow rice wine brewing for ethyl carbamate regulation and its mitigation mechanism. Zhou W; Hu J; Zhang X; Chen Q Food Chem; 2020 Jul; 319():126554. PubMed ID: 32169766 [TBL] [Abstract][Full Text] [Related]
17. Biodegradation of Ethyl Carbamate and Urea with Lysinibacillus sphaericus MT33 in Chinese Liquor Fermentation. Cui K; Wu Q; Xu Y J Agric Food Chem; 2018 Feb; 66(6):1583-1590. PubMed ID: 29359925 [TBL] [Abstract][Full Text] [Related]
18. Molecular Engineering of Bacillus paralicheniformis Acid Urease To Degrade Urea and Ethyl Carbamate in Model Chinese Rice Wine. Liu Q; Yao X; Liang Q; Li J; Fang F; Du G; Kang Z J Agric Food Chem; 2018 Dec; 66(49):13011-13019. PubMed ID: 30450906 [TBL] [Abstract][Full Text] [Related]
19. Reduced Production of Higher Alcohols by Saccharomyces cerevisiae in Red Wine Fermentation by Simultaneously Overexpressing BAT1 and Deleting BAT2. Ma L; Huang S; Du L; Tang P; Xiao D J Agric Food Chem; 2017 Aug; 65(32):6936-6942. PubMed ID: 28721728 [TBL] [Abstract][Full Text] [Related]
20. Effect of Microbial Interaction on Urea Metabolism in Chinese Liquor Fermentation. Wu Q; Lin J; Cui K; Du R; Zhu Y; Xu Y J Agric Food Chem; 2017 Dec; 65(50):11133-11139. PubMed ID: 29172504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]