These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 28185787)

  • 1. Progression of renal fibrosis in congenital CKD model rats with reduced number of nephrons.
    Yasuda H; Tochigi Y; Katayama K; Suzuki H
    Exp Toxicol Pathol; 2017 Jun; 69(5):245-258. PubMed ID: 28185787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association between renal iron accumulation and renal interstitial fibrosis in a rat model of chronic kidney disease.
    Naito Y; Fujii A; Sawada H; Oboshi M; Iwasaku T; Okuhara Y; Morisawa D; Eguchi A; Hirotani S; Masuyama T
    Hypertens Res; 2015 Jul; 38(7):463-70. PubMed ID: 25693854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glomerular hyperfiltration and hypertrophy in the rat hypoplastic kidney as a model of oligomeganephronic disease.
    Suzuki H; Tokuriki T; Saito K; Hishida A; Suzuki K
    Nephrol Dial Transplant; 2005 Jul; 20(7):1362-9. PubMed ID: 15870220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal Function and Hematology in Rats with Congenital Renal Hypoplasia.
    Yasuda H; Amakasu K; Tochigi Y; Katayama K; Suzuki H
    Comp Med; 2016 Feb; 66(1):10-20. PubMed ID: 26884405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathways to nephron loss starting from glomerular diseases-insights from animal models.
    Kriz W; LeHir M
    Kidney Int; 2005 Feb; 67(2):404-19. PubMed ID: 15673288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transforming growth factor-beta(1) and myofibroblasts: a potential pathway towards renal scarring in human glomerular disease.
    Goumenos DS; Tsamandas AC; Oldroyd S; Sotsiou F; Tsakas S; Petropoulou C; Bonikos D; El Nahas AM; Vlachojannis JG
    Nephron; 2001 Mar; 87(3):240-8. PubMed ID: 11287759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth factor ultrafiltration in experimental diabetic nephropathy contributes to interstitial fibrosis.
    Wang SN; Hirschberg R
    Am J Physiol Renal Physiol; 2000 Apr; 278(4):F554-60. PubMed ID: 10751215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related pathophysiological changes in rat oligomeganephronic hypoplastic kidney.
    Suzuki H; Tokuriki T; Kamita H; Oota C; Takasu M; Saito K; Suzuki K
    Pediatr Nephrol; 2006 May; 21(5):637-42. PubMed ID: 16572339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cisplatin-induced renal interstitial fibrosis in neonatal rats, developing as solitary nephron unit lesions.
    Yamate J; Machida Y; Ide M; Kuwamura M; Kotani T; Sawamoto O; LaMarre J
    Toxicol Pathol; 2005; 33(2):207-17. PubMed ID: 15902963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of glomerular ultrafiltration of growth factors in progressive interstitial fibrosis in diabetic nephropathy.
    Wang SN; LaPage J; Hirschberg R
    Kidney Int; 2000 Mar; 57(3):1002-14. PubMed ID: 10720953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin of interstitial fibroblasts in an accelerated model of angiotensin II-induced renal fibrosis.
    Faulkner JL; Szcykalski LM; Springer F; Barnes JL
    Am J Pathol; 2005 Nov; 167(5):1193-205. PubMed ID: 16251405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferulic acid is nephrodamaging while gallic acid is renal protective in long term treatment of chronic kidney disease.
    Peng CC; Hsieh CL; Wang HE; Chung JY; Chen KC; Peng RY
    Clin Nutr; 2012 Jun; 31(3):405-14. PubMed ID: 22154988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced Klotho expression level in kidney aggravates renal interstitial fibrosis.
    Sugiura H; Yoshida T; Shiohira S; Kohei J; Mitobe M; Kurosu H; Kuro-o M; Nitta K; Tsuchiya K
    Am J Physiol Renal Physiol; 2012 May; 302(10):F1252-64. PubMed ID: 22338084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological characterization of ckd in cats: Insights of fibrogenesis to be recognized.
    Morais GB; Viana DA; Verdugo JM; Roselló MG; Porcel JO; Rocha DD; Xavier Júnior FAF; Barbosa KDSM; Silva FMO; Brito GAC; Sampaio CMS; Evangelista JSAM
    Microsc Res Tech; 2018 Jan; 81(1):46-57. PubMed ID: 29024123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of macrophages in the fibrotic phase of rat crescentic glomerulonephritis.
    Han Y; Ma FY; Tesch GH; Manthey CL; Nikolic-Paterson DJ
    Am J Physiol Renal Physiol; 2013 Apr; 304(8):F1043-53. PubMed ID: 23408165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myofibroblasts and the progression of experimental glomerulonephritis.
    Zhang G; Moorhead PJ; el Nahas AM
    Exp Nephrol; 1995; 3(5):308-18. PubMed ID: 7583053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macrophages, myofibroblasts, and extracellular matrix accumulation in interstitial fibrosis of chronic progressive nephropathy in aged rats.
    Nakatsuji S; Yamate J; Sakuma S
    Vet Pathol; 1998 Sep; 35(5):352-60. PubMed ID: 9754540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cellular and signalling alterations conducted by TGF-β contributing to renal fibrosis.
    Vega G; Alarcón S; San Martín R
    Cytokine; 2016 Dec; 88():115-125. PubMed ID: 27599257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silencing of microRNA-132 reduces renal fibrosis by selectively inhibiting myofibroblast proliferation.
    Bijkerk R; de Bruin RG; van Solingen C; van Gils JM; Duijs JM; van der Veer EP; Rabelink TJ; Humphreys BD; van Zonneveld AJ
    Kidney Int; 2016 Jun; 89(6):1268-80. PubMed ID: 27165825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Towards understanding chronic kidney disease].
    Vergnaud P; Cohen C; Isnard P
    Med Sci (Paris); 2023 Mar; 39(3):265-270. PubMed ID: 36943124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.