BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 28185898)

  • 1. SIRT2 inhibition modulate glutamate and serotonin systems in the prefrontal cortex and induces antidepressant-like action.
    Erburu M; Muñoz-Cobo I; Diaz-Perdigon T; Mellini P; Suzuki T; Puerta E; Tordera RM
    Neuropharmacology; 2017 May; 117():195-208. PubMed ID: 28185898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SIRT2 inhibition reverses anhedonia in the VGLUT1+/- depression model.
    Muñoz-Cobo I; Belloch FB; Díaz-Perdigón T; Puerta E; Tordera RM
    Behav Brain Res; 2017 Sep; 335():128-131. PubMed ID: 28778545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleocytoplasmic export of HDAC5 and SIRT2 downregulation: two epigenetic mechanisms by which antidepressants enhance synaptic plasticity markers.
    Muñoz-Cobo I; Erburu MM; Zwergel C; Cirilli R; Mai A; Valente S; Puerta E; Tordera RM
    Psychopharmacology (Berl); 2018 Oct; 235(10):2831-2846. PubMed ID: 30091005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic stress and antidepressant induced changes in Hdac5 and Sirt2 affect synaptic plasticity.
    Erburu M; Muñoz-Cobo I; Domínguez-Andrés J; Beltran E; Suzuki T; Mai A; Valente S; Puerta E; Tordera RM
    Eur Neuropsychopharmacol; 2015 Nov; 25(11):2036-48. PubMed ID: 26433268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vesicular glutamate transporter 1 (VGLUT1)-mediated glutamate release and membrane GluA1 activation is involved in the rapid antidepressant-like effects of scopolamine in mice.
    Yu H; Li M; Zhou D; Lv D; Liao Q; Lou Z; Shen M; Wang Z; Li M; Xiao X; Zhang Y; Wang C
    Neuropharmacology; 2018 Mar; 131():209-222. PubMed ID: 29274366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early sirtuin 2 inhibition prevents age-related cognitive decline in a senescence-accelerated mouse model.
    Diaz-Perdigon T; Belloch FB; Ricobaraza A; Elboray EE; Suzuki T; Tordera RM; Puerta E
    Neuropsychopharmacology; 2020 Jan; 45(2):347-357. PubMed ID: 31471557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMDA receptor subunits and associated signaling molecules mediating antidepressant-related effects of NMDA-GluN2B antagonism.
    Kiselycznyk C; Jury NJ; Halladay LR; Nakazawa K; Mishina M; Sprengel R; Grant SG; Svenningsson P; Holmes A
    Behav Brain Res; 2015; 287():89-95. PubMed ID: 25800971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antidepressant-like activity of magnesium in the chronic mild stress model in rats: alterations in the NMDA receptor subunits.
    Pochwat B; Szewczyk B; Sowa-Kucma M; Siwek A; Doboszewska U; Piekoszewski W; Gruca P; Papp M; Nowak G
    Int J Neuropsychopharmacol; 2014 Mar; 17(3):393-405. PubMed ID: 24067405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sex differences in the rapid and the sustained antidepressant-like effects of ketamine in stress-naïve and "depressed" mice exposed to chronic mild stress.
    Franceschelli A; Sens J; Herchick S; Thelen C; Pitychoutis PM
    Neuroscience; 2015 Apr; 290():49-60. PubMed ID: 25595985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncoupling DAPK1 from NMDA receptor GluN2B subunit exerts rapid antidepressant-like effects.
    Li SX; Han Y; Xu LZ; Yuan K; Zhang RX; Sun CY; Xu DF; Yuan M; Deng JH; Meng SQ; Gao XJ; Wen Q; Liu LJ; Zhu WL; Xue YX; Zhao M; Shi J; Lu L
    Mol Psychiatry; 2018 Mar; 23(3):597-608. PubMed ID: 28439098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms underlying the rapid-acting antidepressant-like effects of neuropeptide VGF (non-acronymic) C-terminal peptide TLQP-62.
    Lv D; Chen Y; Shen M; Liu X; Zhang Y; Xu J; Wang C
    Neuropharmacology; 2018 Dec; 143():317-326. PubMed ID: 30291938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soluble epoxide hydrolase inhibitor enhances synaptic neurotransmission and plasticity in mouse prefrontal cortex.
    Wu HF; Yen HJ; Huang CC; Lee YC; Wu SZ; Lee TS; Lin HC
    J Biomed Sci; 2015 Oct; 22():94. PubMed ID: 26494028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation by chronic stress and ketamine of ionotropic AMPA/NMDA and metabotropic glutamate receptors in the rat hippocampus.
    Elhussiny MEA; Carini G; Mingardi J; Tornese P; Sala N; Bono F; Fiorentini C; La Via L; Popoli M; Musazzi L; Barbon A
    Prog Neuropsychopharmacol Biol Psychiatry; 2021 Jan; 104():110033. PubMed ID: 32640261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chronic mild stress and imipramine treatment elicit opposite changes in behavior and in gene expression in the mouse prefrontal cortex.
    Erburu M; Cajaleon L; Guruceaga E; Venzala E; Muñoz-Cobo I; Beltrán E; Puerta E; Tordera RM
    Pharmacol Biochem Behav; 2015 Aug; 135():227-36. PubMed ID: 26051025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ketamine treatment involves medial prefrontal cortex serotonin to induce a rapid antidepressant-like activity in BALB/cJ mice.
    Pham TH; Mendez-David I; Defaix C; Guiard BP; Tritschler L; David DJ; Gardier AM
    Neuropharmacology; 2017 Jan; 112(Pt A):198-209. PubMed ID: 27211253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential expression of postsynaptic NMDA and AMPA receptor subunits in the hippocampus and prefrontal cortex of the flinders sensitive line rat model of depression.
    Treccani G; Gaarn du Jardin K; Wegener G; Müller HK
    Synapse; 2016 Nov; 70(11):471-4. PubMed ID: 27262028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antidepressants reverse the attenuation of the neurotrophic MEK/MAPK cascade in frontal cortex by elevated platform stress; reversal of effects on LTP is associated with GluA1 phosphorylation.
    Qi H; Mailliet F; Spedding M; Rocher C; Zhang X; Delagrange P; McEwen B; Jay TM; Svenningsson P
    Neuropharmacology; 2009 Jan; 56(1):37-46. PubMed ID: 18657555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The glutamate receptor GluN2 subunit regulates synaptic trafficking of AMPA receptors in the neonatal mouse brain.
    Hamada S; Ogawa I; Yamasaki M; Kiyama Y; Kassai H; Watabe AM; Nakao K; Aiba A; Watanabe M; Manabe T
    Eur J Neurosci; 2014 Oct; 40(8):3136-46. PubMed ID: 25131300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stress-induced changes of hippocampal NMDA receptors: modulation by duloxetine treatment.
    Calabrese F; Guidotti G; Molteni R; Racagni G; Mancini M; Riva MA
    PLoS One; 2012; 7(5):e37916. PubMed ID: 22666412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crucial Roles for SIRT2 and AMPA Receptor Acetylation in Synaptic Plasticity and Memory.
    Wang G; Li S; Gilbert J; Gritton HJ; Wang Z; Li Z; Han X; Selkoe DJ; Man HY
    Cell Rep; 2017 Aug; 20(6):1335-1347. PubMed ID: 28793258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.