These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28186212)

  • 21. Understanding the effect of cobalt particle size on Fischer-Tropsch synthesis: surface species and mechanistic studies by SSITKA and kinetic isotope effect.
    Yang J; Tveten EZ; Chen D; Holmen A
    Langmuir; 2010 Nov; 26(21):16558-67. PubMed ID: 20973587
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fischer-Tropsch synthesis: study of the promotion of Pt on the reduction property of Co/Al2O3 catalysts by in situ EXAFS of Co K and Pt LIII edges and XPS.
    Jacobs G; Chaney JA; Patterson PM; Das TK; Maillot JC; Davis BH
    J Synchrotron Radiat; 2004 Sep; 11(Pt 5):414-22. PubMed ID: 15310958
    [TBL] [Abstract][Full Text] [Related]  

  • 23. hcp-Co Nanowires Grown on Metallic Foams as Catalysts for Fischer-Tropsch Synthesis.
    Harmel J; Peres L; Estrader M; Berliet A; Maury S; Fécant A; Chaudret B; Serp P; Soulantica K
    Angew Chem Int Ed Engl; 2018 Aug; 57(33):10579-10583. PubMed ID: 29893037
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stabilizing Optimal Crystalline Facet of Cobalt Catalysts for Fischer-Tropsch Synthesis.
    Qin C; Hou B; Wang J; Wang G; Ma Z; Jia L; Li D
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33886-33893. PubMed ID: 31498584
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unraveling the Fischer-Tropsch mechanism: a combined DFT and microkinetic investigation of C-C bond formation on Ru.
    Mirwald JW; Inderwildi OR
    Phys Chem Chem Phys; 2012 May; 14(19):7028-31. PubMed ID: 22482113
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalyst nano-particle size dependence of the Fischer-Tropsch reaction.
    van Santen RA; Markvoor AJ
    Faraday Discuss; 2013; 162():267-79. PubMed ID: 24015588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical characterization of the surface composition of ruthenium nanoparticles in equilibrium with syngas.
    Cusinato L; Martínez-Prieto LM; Chaudret B; Del Rosal I; Poteau R
    Nanoscale; 2016 Jun; 8(21):10974-92. PubMed ID: 27172520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding FTS selectivity: the crucial role of surface hydrogen.
    Weststrate CJ; Niemantsverdriet JW
    Faraday Discuss; 2017 Apr; 197():101-116. PubMed ID: 28170012
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical Insights into the Design and Development of Face-Centered Cubic Ruthenium Catalysts for Fischer-Tropsch Synthesis.
    Li WZ; Liu JX; Gu J; Zhou W; Yao SY; Si R; Guo Y; Su HY; Yan CH; Li WX; Zhang YW; Ma D
    J Am Chem Soc; 2017 Feb; 139(6):2267-2276. PubMed ID: 28099028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the Cobalt Carbide Formation in a Co/TiO
    van Ravenhorst IK; Hoffman AS; Vogt C; Boubnov A; Patra N; Oord R; Akatay C; Meirer F; Bare SR; Weckhuysen BM
    ACS Catal; 2021 Mar; 11(5):2956-2967. PubMed ID: 33815895
    [No Abstract]   [Full Text] [Related]  

  • 31. Stability and reactivity of ϵ-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μ(C).
    de Smit E; Cinquini F; Beale AM; Safonova OV; van Beek W; Sautet P; Weckhuysen BM
    J Am Chem Soc; 2010 Oct; 132(42):14928-41. PubMed ID: 20925335
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and catalysis of location-specific cobalt nanoparticles supported by multiwall carbon nanotubes for Fischer-Tropsch synthesis.
    Zhu Y; Ye Y; Zhang S; Leong ME; Tao FF
    Langmuir; 2012 May; 28(21):8275-80. PubMed ID: 22583353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of Carbon Deposits on the Cobalt-Catalyzed Fischer-Tropsch Reaction: Evidence of a Two-Site Reaction Model.
    Chen W; Kimpel TF; Song Y; Chiang FK; Zijlstra B; Pestman R; Wang P; Hensen EJM
    ACS Catal; 2018 Feb; 8(2):1580-1590. PubMed ID: 29910971
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Platinum-modulated cobalt nanocatalysts for low-temperature aqueous-phase Fischer-Tropsch synthesis.
    Wang H; Zhou W; Liu JX; Si R; Sun G; Zhong MQ; Su HY; Zhao HB; Rodriguez JA; Pennycook SJ; Idrobo JC; Li WX; Kou Y; Ma D
    J Am Chem Soc; 2013 Mar; 135(10):4149-58. PubMed ID: 23428163
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of Reoxidation Thresholds for γ-Al
    Tsakoumis NE; Walmsley JC; Rønning M; van Beek W; Rytter E; Holmen A
    J Am Chem Soc; 2017 Mar; 139(10):3706-3715. PubMed ID: 28191967
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational exploration of Fe55@C240-catalyzed Fischer-Tropsch synthesis.
    Cilpa-Karhu G; Laasonen K
    Phys Chem Chem Phys; 2018 Jan; 20(4):2741-2753. PubMed ID: 29322152
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC.
    Liu JX; Su HY; Sun DP; Zhang BY; Li WX
    J Am Chem Soc; 2013 Nov; 135(44):16284-7. PubMed ID: 24147726
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer-Tropsch synthesis.
    Cheng Q; Tian Y; Lyu S; Zhao N; Ma K; Ding T; Jiang Z; Wang L; Zhang J; Zheng L; Gao F; Dong L; Tsubaki N; Li X
    Nat Commun; 2018 Aug; 9(1):3250. PubMed ID: 30108226
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of Carbon Monoxide Dissociation on a Cobalt Fischer-Tropsch Catalyst.
    Chen W; Zijlstra B; Filot IAW; Pestman R; Hensen EJM
    ChemCatChem; 2018 Jan; 10(1):136-140. PubMed ID: 29399207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.