These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 2818630)
1. The in vitro ketone reduction of warfarin and analogues. Substrate stereoselectivity, product stereoselectivity and species differences. Hermans JJ; Thijssen HH Biochem Pharmacol; 1989 Oct; 38(19):3365-70. PubMed ID: 2818630 [TBL] [Abstract][Full Text] [Related]
2. Comparison of the rat liver microsomal metabolism of the enantiomers of warfarin and 4'-nitrowarfarin (acenocoumarol). Hermans JJ; Thijssen HH Xenobiotica; 1991 Mar; 21(3):295-307. PubMed ID: 1862655 [TBL] [Abstract][Full Text] [Related]
3. Properties and stereoselectivity of carbonyl reductases involved in the ketone reduction of warfarin and analogues. Hermans JJ; Thijssen HH Adv Exp Med Biol; 1993; 328():351-60. PubMed ID: 8493912 [No Abstract] [Full Text] [Related]
4. Stereoselective acetonyl side chain reduction of warfarin and analogs. Partial characterization of two cytosolic carbonyl reductases. Hermans JJ; Thijssen HH Drug Metab Dispos; 1992; 20(2):268-74. PubMed ID: 1352220 [TBL] [Abstract][Full Text] [Related]
5. Vitamin K 2,3-epoxide reductase: the basis for stereoselectivity of 4-hydroxycoumarin anticoagulant activity. Thijssen HH; Baars LG; Vervoort-Peters HT Br J Pharmacol; 1988 Nov; 95(3):675-82. PubMed ID: 3207986 [TBL] [Abstract][Full Text] [Related]
6. Human liver microsomal metabolism of the enantiomers of warfarin and acenocoumarol: P450 isozyme diversity determines the differences in their pharmacokinetics. Hermans JJ; Thijssen HH Br J Pharmacol; 1993 Sep; 110(1):482-90. PubMed ID: 8220911 [TBL] [Abstract][Full Text] [Related]
7. Substrate specificity and stereoselectivity of horse liver alcohol dehydrogenase. Kinetic evaluation of binding and activation parameters controlling the catalytic cycles of unbranched, acyclic secondary alcohols and ketones as substrates of the native and active-site-specific Co(II)-substituted enzyme. Adolph HW; Maurer P; Schneider-Bernlöhr H; Sartorius C; Zeppezauer M Eur J Biochem; 1991 Nov; 201(3):615-25. PubMed ID: 1935957 [TBL] [Abstract][Full Text] [Related]
8. Prominent role of DT-diaphorase as a cellular mechanism reducing chromium(VI) and reverting its mutagenicity. De Flora S; Morelli A; Basso C; Romano M; Serra D; De Flora A Cancer Res; 1985 Jul; 45(7):3188-96. PubMed ID: 4005852 [TBL] [Abstract][Full Text] [Related]
9. Microsomal warfarin binding and vitamin K 2,3-epoxide reductase. Thijssen HH; Baars LG Biochem Pharmacol; 1989 Apr; 38(7):1115-20. PubMed ID: 2706010 [TBL] [Abstract][Full Text] [Related]
10. Assessing the stereoselectivity of carbonyl reductases toward the reduction of OPBE and docking analysis. Chen R; Deng J; Lin J; Yin X; Xie T; Yang S; Wei D Biotechnol Appl Biochem; 2016 Jul; 63(4):465-70. PubMed ID: 25989134 [TBL] [Abstract][Full Text] [Related]
11. Cytochrome P-450 isozyme/isozyme functional interactions and NADPH-cytochrome P-450 reductase concentrations as factors in microsomal metabolism of warfarin. Kaminsky LS; Guengerich FP Eur J Biochem; 1985 Jun; 149(3):479-89. PubMed ID: 3924614 [TBL] [Abstract][Full Text] [Related]
12. Involvement of microsomal NADPH-cytochrome P450 reductase in metabolic reduction of drug ketones. Lehr M; Fabian J; Hanekamp W Biopharm Drug Dispos; 2015 Sep; 36(6):398-404. PubMed ID: 25765813 [TBL] [Abstract][Full Text] [Related]
13. Heterogeneity of carbonyl reduction in subcellular fractions and different organs in rodents. Oppermann UC; Maser E; Mangoura SA; Netter KJ Biochem Pharmacol; 1991 Dec; 42 Suppl():S189-95. PubMed ID: 1768277 [TBL] [Abstract][Full Text] [Related]
14. Carbonyl reduction of warfarin: Identification and characterization of human warfarin reductases. Malátková P; Sokolová S; Chocholoušová Havlíková L; Wsól V Biochem Pharmacol; 2016 Jun; 109():83-90. PubMed ID: 27055738 [TBL] [Abstract][Full Text] [Related]
15. Effect of experimental kidney disease on the functional expression of hepatic reductases. Alshogran OY; Naud J; Ocque AJ; Leblond FA; Pichette V; Nolin TD Drug Metab Dispos; 2015 Jan; 43(1):100-6. PubMed ID: 25332430 [TBL] [Abstract][Full Text] [Related]
16. Chiral inversion of RS-8359: a selective and reversible MAO-A inhibitor via oxido-reduction of keto-alcohol. Itoh K; Hoshino K; Endo A; Asakawa T; Yamakami K; Noji C; Kosaka T; Tanaka Y Chirality; 2006 Sep; 18(9):698-706. PubMed ID: 16823812 [TBL] [Abstract][Full Text] [Related]
17. Microbial models of mammalian metabolism: stereoselective metabolism of warfarin in the fungus Cunninghamella elegans. Wong YW; Davis PJ Pharm Res; 1989 Nov; 6(11):982-7. PubMed ID: 2594692 [TBL] [Abstract][Full Text] [Related]
18. A comparison between stereospecificity of oracin reduction and stereoselectivity of oxidation of 11-dihydrooracin enantiomers in vitro in rat and guinea pig. Skálová L; Wsól V; Szotáková B; Kvasnicková E Chirality; 1999; 11(5-6):510-5. PubMed ID: 10368925 [TBL] [Abstract][Full Text] [Related]
19. Microbial transformations of warfarin: stereoselective reduction by Nocardia corallina and Arthrobacter species. Davis PJ; Rizzo JD Appl Environ Microbiol; 1982 Apr; 43(4):884-90. PubMed ID: 7081986 [TBL] [Abstract][Full Text] [Related]
20. Reductive metabolism of an alpha,beta-ketoalkyne, 4-phenyl-3-butyn-2-one, by rat liver preparations. Kitamura S; Kohno Y; Okamoto Y; Takeshita M; Ohta S Drug Metab Dispos; 2002 Apr; 30(4):414-20. PubMed ID: 11901095 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]