BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 28186321)

  • 1. Plasmid-encoded biosynthetic genes alleviate metabolic disadvantages while increasing glucose conversion to shikimate in an engineered Escherichia coli strain.
    Rodriguez A; Martínez JA; Millard P; Gosset G; Portais JC; Létisse F; Bolivar F
    Biotechnol Bioeng; 2017 Jun; 114(6):1319-1330. PubMed ID: 28186321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction.
    Kogure T; Kubota T; Suda M; Hiraga K; Inui M
    Metab Eng; 2016 Nov; 38():204-216. PubMed ID: 27553883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constitutive expression of selected genes from the pentose phosphate and aromatic pathways increases the shikimic acid yield in high-glucose batch cultures of an Escherichia coli strain lacking PTS and pykF.
    Rodriguez A; Martínez JA; Báez-Viveros JL; Flores N; Hernández-Chávez G; Ramírez OT; Gosset G; Bolivar F
    Microb Cell Fact; 2013 Sep; 12():86. PubMed ID: 24079972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic modeling and response surface analysis of an Escherichia coli strain engineered for shikimic acid production.
    Martínez JA; Rodriguez A; Moreno F; Flores N; Lara AR; Ramírez OT; Gosset G; Bolivar F
    BMC Syst Biol; 2018 Nov; 12(1):102. PubMed ID: 30419897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of isopropyl alcohol-producing Escherichia coli strains with
    Okahashi N; Matsuda F; Yoshikawa K; Shirai T; Matsumoto Y; Wada M; Shimizu H
    Biotechnol Bioeng; 2017 Dec; 114(12):2782-2793. PubMed ID: 28755490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic Engineering of Escherichia coli for Efficient Production of 2-Pyrone-4,6-dicarboxylic Acid from Glucose.
    Luo ZW; Kim WJ; Lee SY
    ACS Synth Biol; 2018 Sep; 7(9):2296-2307. PubMed ID: 30096230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic flux responses to genetic modification for shikimic acid production by Bacillus subtilis strains.
    Liu DF; Ai GM; Zheng QX; Liu C; Jiang CY; Liu LX; Zhang B; Liu YM; Yang C; Liu SJ
    Microb Cell Fact; 2014 Mar; 13(1):40. PubMed ID: 24628944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of citramalate by metabolically engineered Escherichia coli.
    Wu X; Eiteman MA
    Biotechnol Bioeng; 2016 Dec; 113(12):2670-2675. PubMed ID: 27316562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae.
    Suástegui M; Guo W; Feng X; Shao Z
    Biotechnol Bioeng; 2016 Dec; 113(12):2676-2685. PubMed ID: 27317047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly selective production of succinic acid by metabolically engineered Mannheimia succiniciproducens and its efficient purification.
    Choi S; Song H; Lim SW; Kim TY; Ahn JH; Lee JW; Lee MH; Lee SY
    Biotechnol Bioeng; 2016 Oct; 113(10):2168-77. PubMed ID: 27070659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system.
    Escalante A; Calderón R; Valdivia A; de Anda R; Hernández G; Ramírez OT; Gosset G; Bolívar F
    Microb Cell Fact; 2010 Apr; 9():21. PubMed ID: 20385022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Rational design and construction of an overproducing shikimic acid Escherichia coli by metabolic engineering].
    Li M; Chen X; Zhou L; Shen W; Fan Y; Wang Z
    Sheng Wu Gong Cheng Xue Bao; 2013 Jan; 29(1):56-67. PubMed ID: 23631118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli.
    Harder BJ; Bettenbrock K; Klamt S
    Metab Eng; 2016 Nov; 38():29-37. PubMed ID: 27269589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering.
    Cui YY; Ling C; Zhang YY; Huang J; Liu JZ
    Microb Cell Fact; 2014 Feb; 13():21. PubMed ID: 24512078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific integration and constitutive expression of key genes into Escherichia coli chromosome increases shikimic acid yields.
    Liu X; Lin J; Hu H; Zhou B; Zhu B
    Enzyme Microb Technol; 2016 Jan; 82():96-104. PubMed ID: 26672454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Escherichia coli to enhance shikimic acid production from sorbitol.
    Liu X; Lin J; Hu H; Zhou B; Zhu B
    World J Microbiol Biotechnol; 2014 Sep; 30(9):2543-50. PubMed ID: 24894540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering the shikimate pathway for biosynthesis of molecules with pharmaceutical activities in E. coli.
    Jiang M; Zhang H
    Curr Opin Biotechnol; 2016 Dec; 42():1-6. PubMed ID: 26921705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose.
    Chen X; Li M; Zhou L; Shen W; Algasan G; Fan Y; Wang Z
    Bioresour Technol; 2014 Aug; 166():64-71. PubMed ID: 24905044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the effects of carbon sources on the metabolic capacity for shikimic acid production in Escherichia coli using in silico metabolic predictions.
    Ahn JO; Lee HW; Saha R; Park MS; Jung JK; Lee DY
    J Microbiol Biotechnol; 2008 Nov; 18(11):1773-84. PubMed ID: 19047820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth-rate recovery of Escherichia coli cultures carrying a multicopy plasmid, by engineering of the pentose-phosphate pathway.
    Flores S; de Anda-Herrera R; Gosset G; Bolívar FG
    Biotechnol Bioeng; 2004 Aug; 87(4):485-94. PubMed ID: 15286986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.