These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 28186335)

  • 1. Characterization of a continuous agitated cell reactor for oxygen dependent biocatalysis.
    Toftgaard Pedersen A; de Carvalho TM; Sutherland E; Rehn G; Ashe R; Woodley JM
    Biotechnol Bioeng; 2017 Jun; 114(6):1222-1230. PubMed ID: 28186335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing an enzymatic oscillator: bistability and feedback controlled oscillations with glucose oxidase in a continuous flow stirred tank reactor.
    Vanag VK; Míguez DG; Epstein IR
    J Chem Phys; 2006 Nov; 125(19):194515. PubMed ID: 17129131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative performance evaluation of conventional and two-phase hydrophobic stirred tank reactors for methane abatement: Mass transfer and biological considerations.
    Cantera S; Estrada JM; Lebrero R; García-Encina PA; Muñoz R
    Biotechnol Bioeng; 2016 Jun; 113(6):1203-12. PubMed ID: 26615043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and simulation of enzymatic gluconic acid production using immobilized enzyme and CSTR-PFTR circulation reaction system.
    Li C; Lin J; Gao L; Lin H; Lin J
    Biotechnol Lett; 2018 Apr; 40(4):649-657. PubMed ID: 29349627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production.
    Ding J; Wang X; Zhou XF; Ren NQ; Guo WQ
    Bioresour Technol; 2010 Sep; 101(18):7016-24. PubMed ID: 20427177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Startup and oxygen concentration effects in a continuous granular mixed flow autotrophic nitrogen removal reactor.
    Varas R; Guzmán-Fierro V; Giustinianovich E; Behar J; Fernández K; Roeckel M
    Bioresour Technol; 2015 Aug; 190():345-51. PubMed ID: 25965951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidation of glucose to gluconic acid by glucose oxidase in a membrane bioreactor.
    Tomotani EJ; das Neves LC; Vitolo M
    Appl Biochem Biotechnol; 2005; 121-124():149-62. PubMed ID: 15917595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of glucose oxidase in a membrane reactor for gluconic acid production.
    das Neves LC; Vitolo M
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):161-70. PubMed ID: 18478385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of a novel type impinging streams reactor in solid-liquid enzyme reactions and modeling of residence time distribution using GDB model.
    Fatourehchi N; Sohrabi M; Dabir B; Royaee SJ; Haji Malayeri A
    Enzyme Microb Technol; 2014 Feb; 55():14-20. PubMed ID: 24411440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transesterification of vegetable oils: Simulating the replacement of batch reactors with continuous reactors.
    Fonseca FA; Vidal-Vieira JA; Ravagnani SP
    Bioresour Technol; 2010 Nov; 101(21):8151-7. PubMed ID: 20566283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residence time distributions of gas flowing through rotating drum bioreactors.
    Hardin MT; Howes T; Mitchell DA
    Biotechnol Bioeng; 2001 Jul; 74(2):145-53. PubMed ID: 11370003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Let the substrate flow, not the enzyme: Practical immobilization of d-amino acid oxidase in a glass microreactor for effective biocatalytic conversions.
    Bolivar JM; Tribulato MA; Petrasek Z; Nidetzky B
    Biotechnol Bioeng; 2016 Nov; 113(11):2342-9. PubMed ID: 27216813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scale-up of enzymatic production of lactobionic acid using the rotary jet head system.
    Hua L; Nordkvist M; Nielsen PM; Villadsen J
    Biotechnol Bioeng; 2007 Jul; 97(4):842-9. PubMed ID: 17154315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UASB reactor hydrodynamics: residence time distribution and proposed modelling tools.
    López I; Borzacconi L
    Environ Technol; 2010 May; 31(6):591-600. PubMed ID: 20540420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and reaction engineering of levulinic acid production from aqueous glucose solutions.
    Weingarten R; Cho J; Xing R; Conner WC; Huber GW
    ChemSusChem; 2012 Jul; 5(7):1280-90. PubMed ID: 22696262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilized glucose oxidase--catalase and their deactivation in a differential-bed loop reactor.
    Prenosil JE
    Biotechnol Bioeng; 1979 Jan; 21(1):89-109. PubMed ID: 427262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using CFD simulations and statistical analysis to correlate oxygen mass transfer coefficient to both geometrical parameters and operating conditions in a stirred-tank bioreactor.
    Amer M; Feng Y; Ramsey JD
    Biotechnol Prog; 2019 May; 35(3):e2785. PubMed ID: 30758910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A carbon dioxide stripping model for mammalian cell culture in manufacturing scale bioreactors.
    Xing Z; Lewis AM; Borys MC; Li ZJ
    Biotechnol Bioeng; 2017 Jun; 114(6):1184-1194. PubMed ID: 27922179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of two methods for designing calorimeters using stirred tank reactors.
    Regestein L; Giese H; Zavrel M; Büchs J
    Biotechnol Bioeng; 2013 Jan; 110(1):180-90. PubMed ID: 22829331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.