BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28186475)

  • 21. Programmable valve shunts: are they really better?
    Kataria R; Kumar V; Mehta VS
    Turk Neurosurg; 2012; 22(2):237-8. PubMed ID: 22437300
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cochlear implantation in the presence of a programmable ventriculoperitoneal shunt.
    Wiet RM; El-Kashlan HK
    Otol Neurotol; 2009 Sep; 30(6):704-7. PubMed ID: 19638947
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Does Valve Design Affect the Tensile Strength of Ventriculoperitoneal Shunts?
    Patel P; Arshad H; Jefferys K; Gernsback J
    Oper Neurosurg (Hagerstown); 2024 Jul; ():. PubMed ID: 38967442
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of 3-tesla magnetic resonance imaging on various pressure programmable shunt valves.
    Inoue T; Kuzu Y; Ogasawara K; Ogawa A
    J Neurosurg; 2005 Aug; 103(2 Suppl):163-5. PubMed ID: 16370283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Laboratory testing of hydrocephalus shunts -- conclusion of the U.K. Shunt evaluation programme.
    Czosnyka Z; Czosnyka M; Richards HK; Pickard JD
    Acta Neurochir (Wien); 2002 Jun; 144(6):525-38; discussion 538. PubMed ID: 12111485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An In Vitro Study of Magnetic Field Interference with an Electronic Shunt Programmer.
    Pajer HB; Carlson AP; Botros JA; Spader HS
    World Neurosurg; 2022 Oct; 166():e568-e571. PubMed ID: 35868507
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro performance of six combinations of adjustable differential pressure valves and fixed anti-siphon devices with and without vertical motion.
    Fiss I; Röhrig P; Hore N; von der Brelie C; Bettag C; Freimann FB; Thomale UW; Rohde V; Brandner S
    Acta Neurochir (Wien); 2020 Oct; 162(10):2421-2430. PubMed ID: 32779025
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Telemetric assessment of intracranial pressure changes consequent to manipulations of the Codman-Medos programmable shunt valve.
    Frim DM; Lathrop D
    Pediatr Neurosurg; 2000 Nov; 33(5):237-242. PubMed ID: 11155059
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Programmable shunt valve affected by exposure to a tablet computer.
    Strahle J; Selzer BJ; Muraszko KM; Garton HJ; Maher CO
    J Neurosurg Pediatr; 2012 Aug; 10(2):118-20. PubMed ID: 22734456
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Programming jammed Codman Hakim programmable valves: study of an explanted valve and successful programming in a patient.
    Wong ST; Wen E; Fong D
    J Neurosurg Pediatr; 2013 Aug; 12(2):160-5. PubMed ID: 23705870
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetic toys: forbidden for pediatric patients with certain programmable shunt valves?
    Zuzak TJ; Balmer B; Schmidig D; Boltshauser E; Grotzer MA
    Childs Nerv Syst; 2009 Feb; 25(2):161-4. PubMed ID: 19057906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrodynamic properties of hydrocephalus shunts.
    Czosnyka Z; Czosnyka M; Richards H; Pickard JD
    Acta Neurochir Suppl; 1998; 71():334-9. PubMed ID: 9779223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alteration of the pressure setting of a Codman-Hakim programmable valve by a television.
    Utsuki S; Shimizu S; Oka H; Suzuki S; Fujii K
    Neurol Med Chir (Tokyo); 2006 Aug; 46(8):405-7. PubMed ID: 16936463
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prevalence and indication for changing the primary valve opening pressure in ventriculoperitoneal shunts - A single center five years overview.
    Müggenburg L; Behmanesh B; Dinc N; Marquardt G; Seifert V; Quick-Weller J
    Clin Neurol Neurosurg; 2019 Nov; 186():105523. PubMed ID: 31525716
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A randomized, controlled study of a programmable shunt valve versus a conventional valve for patients with hydrocephalus. Hakim-Medos Investigator Group.
    Pollack IF; Albright AL; Adelson PD
    Neurosurgery; 1999 Dec; 45(6):1399-408; discussion 1408-11. PubMed ID: 10598708
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of Programmable Shunt Setting Using CT: Feasibility Study.
    Slonimsky E; Zacharia B; Mamourian A
    Cureus; 2021 Nov; 13(11):e19818. PubMed ID: 34963836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From fixed-pressure paediGAV to programmable proGAV/proSA serial valves for pediatric hydrocephalus within the 1st year of life: a technical single-center analysis.
    Teping F; Huelser M; Sippl C; Zemlin M; Oertel J
    J Neurosurg Pediatr; 2023 Jun; 31(6):536-544. PubMed ID: 36933264
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Programmable CSF shunt valves: radiographic identification and interpretation.
    Lollis SS; Mamourian AC; Vaccaro TJ; Duhaime AC
    AJNR Am J Neuroradiol; 2010 Aug; 31(7):1343-6. PubMed ID: 20150313
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The programmable adult Codman Hakim valve is useful even in very small children with hydrocephalus. A 7-year retrospective study with special focus on cost/benefit analysis.
    Arnell K; Eriksson E; Olsen L
    Eur J Pediatr Surg; 2006 Feb; 16(1):1-7. PubMed ID: 16544218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A clinical survey of hydrocephalus and current treatment for hydrocephalus in Japan: analysis by nationwide questionnaire.
    Miyake H; Ohta T; Kajimoto Y; Ogawa D
    Childs Nerv Syst; 1999 Aug; 15(8):363-8. PubMed ID: 10447603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.