These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28186475)

  • 41. Efficacy and safety of programmable compared with fixed anti-siphon devices for treating idiopathic normal-pressure hydrocephalus (iNPH) in adults - SYGRAVA: study protocol for a randomized trial.
    Scholz R; Lemcke J; Meier U; Stengel D
    Trials; 2018 Oct; 19(1):566. PubMed ID: 30333067
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cochlear implantation for total deafness after ipsilateral ventriculoperitoneal shunt surgery: technical report.
    An YH; Song SJ; Yoon SW; Kim JH; Shim HJ
    Acta Neurochir (Wien); 2011 Dec; 153(12):2479-83; discussion 2483. PubMed ID: 21989777
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Experience with a programmable valve shunt system.
    Yamashita N; Kamiya K; Yamada K
    J Neurosurg; 1999 Jul; 91(1):26-31. PubMed ID: 10389876
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vitro testing of explanted shunt valves in hydrocephalic patients with suspected valve malfunction.
    Bettag C; von der Brelie C; Freimann FB; Thomale UW; Rohde V; Fiss I
    Neurosurg Rev; 2022 Feb; 45(1):571-583. PubMed ID: 34027574
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A rare case of shunt malfunction attributable to blockage of a Codman-Hakim programmable shunt valve.
    Kurosaki K; Hamada H; Hayashi N; Kurimoto M; Hirashima Y; Endo S
    Childs Nerv Syst; 2002 Apr; 18(3-4):183-5. PubMed ID: 11981632
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of ventriculoperitoneal shunt valve design in the treatment of pediatric hydrocephalus--a single center study of valve performance in the clinical setting.
    Beez T; Sarikaya-Seiwert S; Bellstädt L; Mühmer M; Steiger HJ
    Childs Nerv Syst; 2014 Feb; 30(2):293-7. PubMed ID: 23900632
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The applicability of fixed and adjustable gravitational shunt valves in two different clinical settings.
    Månsson PK; Hansen TS; Juhler M
    Acta Neurochir (Wien); 2018 Jul; 160(7):1415-1423. PubMed ID: 29804178
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Management of idiopathic intracranial hypertension with a programmable lumboperitoneal shunt: Early experience.
    Alkherayf F; Abou Al-Shaar H; Awad M
    Clin Neurol Neurosurg; 2015 Sep; 136():5-9. PubMed ID: 26056804
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Seven years of clinical experience with the programmable Codman Hakim valve: a retrospective study of 583 patients.
    Zemack G; Romner B
    J Neurosurg; 2000 Jun; 92(6):941-8. PubMed ID: 10839253
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Magnetically programmable shunt valve: MRI at 3-Tesla.
    Shellock FG; Wilson SF; Mauge CP
    Magn Reson Imaging; 2007 Sep; 25(7):1116-21. PubMed ID: 17707175
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Unexpectedly Smaller Artifacts of 3.0-T Magnetic Resonance Imaging than 1.5 T: Recommendation of 3.0-T Scanners for Patients with Magnet-Resistant Adjustable Ventriculoperitoneal Shunt Devices.
    Amano Y; Kuroda N; Uchida D; Sakakura Y; Nakatogawa H; Ando N; Nakayama T; Sato H; Masui T; Sameshima T; Tanaka T
    World Neurosurg; 2019 Oct; 130():e393-e399. PubMed ID: 31260847
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ventriculoperitoneal shunt infection and malfunction in adult patients: incidence, risk factors, and long-term follow-up of single institution experience.
    Kim M; Choi JH; Park JC; Ahn JS; Kwun BD; Park W
    Neurosurg Rev; 2024 Jun; 47(1):269. PubMed ID: 38864925
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Shunt Devices for the Treatment of Adult Hydrocephalus: Recent Progress and Characteristics.
    Miyake H
    Neurol Med Chir (Tokyo); 2016 May; 56(5):274-83. PubMed ID: 27041631
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Significance of hydrostatic valves in therapy of chronic hydrocephalus].
    Kiefer M; Eymann R; Mascarós V; Walter M; Steudel WI
    Nervenarzt; 2000 Dec; 71(12):975-86. PubMed ID: 11139994
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The programmable shunt-system Codman Medos Hakim: A clinical observation study and review of literature.
    Nowak S; Mehdorn HM; Stark A
    Clin Neurol Neurosurg; 2018 Oct; 173():154-158. PubMed ID: 30142621
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of amusement park rides on programmable shunt valve settings.
    Strahle J; Collins K; Stetler WR; Smith BW; Garton T; Garton C; Garton HJ; Maher CO
    Pediatr Neurosurg; 2013; 49(1):21-3. PubMed ID: 24192584
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of programmable shunt valves vs standard valves for communicating hydrocephalus of adults: a retrospective analysis of 407 patients.
    Ringel F; Schramm J; Meyer B
    Surg Neurol; 2005 Jan; 63(1):36-41; discussion 41. PubMed ID: 15639519
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A rare case of shunt malfunction attributable to a broken Codman-Hakim programmable shunt valve after a blow to the head.
    Okazaki T; Oki S; Migita K; Kurisu K
    Pediatr Neurosurg; 2005; 41(5):241-3. PubMed ID: 16195675
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improved outcome in shunted iNPH with a combination of a Codman Hakim programmable valve and an Aesculap-Miethke ShuntAssistant.
    Lemcke J; Meier U
    Cent Eur Neurosurg; 2010 Aug; 71(3):113-6. PubMed ID: 20373276
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Breakage of shunt devices (Sophy programmable pressure valve) following implantation in the hypochondriac region.
    Aihara N; Takagi T; Hashimoto N; Fukushima T; Karasawa K; Fuse T
    Childs Nerv Syst; 1997; 13(11-12):636-8. PubMed ID: 9454985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.