These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 28186724)
1. Effect of Heterocyclic Anchoring Sequence on the Properties of Dithienogermole-Based Solar Cells. Walker B; Han D; Moon M; Park SY; Kim KH; Kim JY; Yang C ACS Appl Mater Interfaces; 2017 Mar; 9(8):7091-7099. PubMed ID: 28186724 [TBL] [Abstract][Full Text] [Related]
2. Silaindacenodithiophene-based molecular donor: morphological features and use in the fabrication of compositionally tolerant, high-efficiency bulk heterojunction solar cells. Love JA; Nagao I; Huang Y; Kuik M; Gupta V; Takacs CJ; Coughlin JE; Qi L; van der Poll TS; Kramer EJ; Heeger AJ; Nguyen TQ; Bazan GC J Am Chem Soc; 2014 Mar; 136(9):3597-606. PubMed ID: 24559286 [TBL] [Abstract][Full Text] [Related]
3. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. Liang Y; Yu L Acc Chem Res; 2010 Sep; 43(9):1227-36. PubMed ID: 20853907 [TBL] [Abstract][Full Text] [Related]
4. D-A-D-π-D-A-D type diketopyrrolopyrrole based small molecule electron donors for bulk heterojunction organic solar cells. Patil Y; Misra R; Sharma A; Sharma GD Phys Chem Chem Phys; 2016 Jun; 18(25):16950-7. PubMed ID: 27292157 [TBL] [Abstract][Full Text] [Related]
5. Phenothiazine-based small-molecule organic solar cells with power conversion efficiency over 7% and open circuit voltage of about 1.0 V using solvent vapor annealing. Rout Y; Misra R; Singhal R; Biswas S; Sharma GD Phys Chem Chem Phys; 2018 Feb; 20(9):6321-6329. PubMed ID: 29435540 [TBL] [Abstract][Full Text] [Related]
6. Design and synthesis of molecular donors for solution-processed high-efficiency organic solar cells. Coughlin JE; Henson ZB; Welch GC; Bazan GC Acc Chem Res; 2014 Jan; 47(1):257-70. PubMed ID: 23984626 [TBL] [Abstract][Full Text] [Related]
7. Molecular Engineering Strategy for High Efficiency Fullerene-Free Organic Solar Cells Using Conjugated 1,8-Naphthalimide and Fluorenone Building Blocks. Do TT; Pham HD; Manzhos S; Bell JM; Sonar P ACS Appl Mater Interfaces; 2017 May; 9(20):16967-16976. PubMed ID: 28467709 [TBL] [Abstract][Full Text] [Related]
8. Series of Multifluorine Substituted Oligomers for Organic Solar Cells with Efficiency over 9% and Fill Factor of 0.77 by Combination Thermal and Solvent Vapor Annealing. Wang JL; Liu KK; Yan J; Wu Z; Liu F; Xiao F; Chang ZF; Wu HB; Cao Y; Russell TP J Am Chem Soc; 2016 Jun; 138(24):7687-97. PubMed ID: 27225322 [TBL] [Abstract][Full Text] [Related]
9. Wide Band Gap and Highly Conjugated Copolymers Incorporating 2-(Triisopropylsilylethynyl)thiophene-Substituted Benzodithiophene for Efficient Non-Fullerene Organic Solar Cells. Wang L; Liu H; Huai Z; Yang S ACS Appl Mater Interfaces; 2017 Aug; 9(34):28828-28837. PubMed ID: 28792202 [TBL] [Abstract][Full Text] [Related]
10. Applying Thienyl Side Chains and Different π-Bridge to Aromatic Side-Chain Substituted Indacenodithiophene-Based Small Molecule Donors for High-Performance Organic Solar Cells. Wang JL; Liu KK; Liu S; Liu F; Wu HB; Cao Y; Russell TP ACS Appl Mater Interfaces; 2017 Jun; 9(23):19998-20009. PubMed ID: 28535032 [TBL] [Abstract][Full Text] [Related]
11. Peculiarity of Two Thermodynamically-Stable Morphologies and Their Impact on the Efficiency of Small Molecule Bulk Heterojunction Solar Cells. Herath N; Das S; Keum JK; Zhu J; Kumar R; Ivanov IN; Sumpter BG; Browning JF; Xiao K; Gu G; Joshi P; Smith S; Lauter V Sci Rep; 2015 Aug; 5():13407. PubMed ID: 26315070 [TBL] [Abstract][Full Text] [Related]
12. A Solution-Processable Molecule using Thieno[3,2-b]thiophene as Building Block for Efficient Organic Solar Cells. Wei H; Chen W; Han L; Wang T; Bao X; Li X; Liu J; Zhou Y; Yang R Chem Asian J; 2015 Aug; 10(8):1791-8. PubMed ID: 26097019 [TBL] [Abstract][Full Text] [Related]
13. Interfacial Energetic Level Mapping and Nano-Ordering of Small Molecule/Fullerene Organic Solar Cells by Scanning Tunneling Microscopy and Spectroscopy. Caballero-Quintana I; Romero-Borja D; Maldonado JL; Nicasio-Collazo J; Amargós-Reyes O; Jiménez-González A Nanomaterials (Basel); 2020 Feb; 10(3):. PubMed ID: 32121230 [TBL] [Abstract][Full Text] [Related]
14. Critical interfaces in organic solar cells and their influence on the open-circuit voltage. Potscavage WJ; Sharma A; Kippelen B Acc Chem Res; 2009 Nov; 42(11):1758-67. PubMed ID: 19708653 [TBL] [Abstract][Full Text] [Related]
15. Modifying the Chemical Structure of a Porphyrin Small Molecule with Benzothiophene Groups for the Reproducible Fabrication of High Performance Solar Cells. Liang T; Xiao L; Gao K; Xu W; Peng X; Cao Y ACS Appl Mater Interfaces; 2017 Mar; 9(8):7131-7138. PubMed ID: 28185448 [TBL] [Abstract][Full Text] [Related]
16. Independent control of bulk and interfacial morphologies of small molecular weight organic heterojunction solar cells. Zimmerman JD; Xiao X; Renshaw CK; Wang S; Diev VV; Thompson ME; Forrest SR Nano Lett; 2012 Aug; 12(8):4366-71. PubMed ID: 22809215 [TBL] [Abstract][Full Text] [Related]
17. Effects of alkyl chain length on the optoelectronic properties and performance of pyrrolo-perylene solar cells. Liu X; Kim YJ; Ha YH; Zhao Q; Park CE; Kim YH ACS Appl Mater Interfaces; 2015 Apr; 7(16):8859-67. PubMed ID: 25836743 [TBL] [Abstract][Full Text] [Related]
18. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Li Y Acc Chem Res; 2012 May; 45(5):723-33. PubMed ID: 22288572 [TBL] [Abstract][Full Text] [Related]
19. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. Heremans P; Cheyns D; Rand BP Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055 [TBL] [Abstract][Full Text] [Related]
20. Molecular bulk heterojunctions: an emerging approach to organic solar cells. Roncali J Acc Chem Res; 2009 Nov; 42(11):1719-30. PubMed ID: 19580313 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]