These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 28186772)

  • 1. The Thermodynamics of Restoring Underwater Superhydrophobicity.
    Jones PR; Kirn AT; Ma YD; Rich DT; Patankar NA
    Langmuir; 2017 Mar; 33(11):2911-2919. PubMed ID: 28186772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous recovery of superhydrophobicity on nanotextured surfaces.
    Prakash S; Xi E; Patel AJ
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5508-13. PubMed ID: 27140619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wetting and Dewetting Transitions on Submerged Superhydrophobic Surfaces with Hierarchical Structures.
    Wu H; Yang Z; Cao B; Zhang Z; Zhu K; Wu B; Jiang S; Chai G
    Langmuir; 2017 Jan; 33(1):407-416. PubMed ID: 27989127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of Trapping Gases for Underwater Superhydrophobicity.
    Patankar NA
    Langmuir; 2016 Jul; 32(27):7023-8. PubMed ID: 27276525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recoverable underwater superhydrophobicity from a fully wetted state via dynamic air spreading.
    Zhao Y; Xu Z; Gong L; Yang S; Zeng H; He C; Ge D; Yang L
    iScience; 2021 Dec; 24(12):103427. PubMed ID: 34877492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. General formulations for predicting longevity of submerged superhydrophobic surfaces composed of pores or posts.
    Hemeda AA; Tafreshi HV
    Langmuir; 2014 Sep; 30(34):10317-27. PubMed ID: 25109908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metastable underwater superhydrophobicity.
    Poetes R; Holtzmann K; Franze K; Steiner U
    Phys Rev Lett; 2010 Oct; 105(16):166104. PubMed ID: 21230986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Recovery Superhydrophobic Surfaces: Modular Design.
    Lisi E; Amabili M; Meloni S; Giacomello A; Casciola CM
    ACS Nano; 2018 Jan; 12(1):359-367. PubMed ID: 29182848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Long-Term Underwater Superoleophobic Al Surfaces and Application on Underwater Lossless Manipulation of Non-Polar Organic Liquids.
    Song J; Huang L; Lu Y; Liu X; Deng X; Yang X; Huang S; Sun J; Jin Z; Parkin IP
    Sci Rep; 2016 Aug; 6():31818. PubMed ID: 27550427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metastable states and wetting transition of submerged superhydrophobic structures.
    Lv P; Xue Y; Shi Y; Lin H; Duan H
    Phys Rev Lett; 2014 May; 112(19):196101. PubMed ID: 24877948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wettability of natural superhydrophobic surfaces.
    Webb HK; Crawford RJ; Ivanova EP
    Adv Colloid Interface Sci; 2014 Aug; 210():58-64. PubMed ID: 24556235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of ice nucleation on water repellent surfaces.
    Alizadeh A; Yamada M; Li R; Shang W; Otta S; Zhong S; Ge L; Dhinojwala A; Conway KR; Bahadur V; Vinciquerra AJ; Stephens B; Blohm ML
    Langmuir; 2012 Feb; 28(6):3180-6. PubMed ID: 22235939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of fluid flow on the stability and wetting transition of submerged superhydrophobic surfaces.
    Xiang Y; Xue Y; Lv P; Li D; Duan H
    Soft Matter; 2016 May; 12(18):4241-6. PubMed ID: 27071538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability.
    Lee BJ; Zhang Z; Baek S; Kim S; Kim D; Yong K
    Sci Rep; 2016 Apr; 6():24653. PubMed ID: 27095674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origins of thermodynamically stable superhydrophobicity of boron nitride nanotubes coatings.
    Boinovich LB; Emelyanenko AM; Pashinin AS; Lee CH; Drelich J; Yap YK
    Langmuir; 2012 Jan; 28(2):1206-16. PubMed ID: 22149295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-bubble dynamics in pool boiling of one-component fluids.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063002. PubMed ID: 25019874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Organization of Microscale Condensate for Delayed Flooding of Nanostructured Superhydrophobic Surfaces.
    Ölçeroğlu E; McCarthy M
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5729-36. PubMed ID: 26855239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Underwater drag-reducing effect of superhydrophobic submarine model.
    Zhang S; Ouyang X; Li J; Gao S; Han S; Liu L; Wei H
    Langmuir; 2015; 31(1):587-93. PubMed ID: 25496725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.