These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 28186772)

  • 21. Underwater drag-reducing effect of superhydrophobic submarine model.
    Zhang S; Ouyang X; Li J; Gao S; Han S; Liu L; Wei H
    Langmuir; 2015; 31(1):587-93. PubMed ID: 25496725
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predictive model for ice formation on superhydrophobic surfaces.
    Bahadur V; Mishchenko L; Hatton B; Taylor JA; Aizenberg J; Krupenkin T
    Langmuir; 2011 Dec; 27(23):14143-50. PubMed ID: 21899285
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of the restricting flow of solid edges in fabricating superhydrophobic surfaces.
    Sheng X; Zhang J; Jiang L
    Langmuir; 2009 Sep; 25(17):9903-7. PubMed ID: 19499934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Origin of Superhydrophobicity for Intrinsically Hydrophilic Metal Oxides: A Preferential O
    Qi G; Liu X; Li C; Wang C; Yuan Z
    Angew Chem Int Ed Engl; 2019 Nov; 58(48):17406-17411. PubMed ID: 31556200
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pathways to dewetting in hydrophobic confinement.
    Remsing RC; Xi E; Vembanur S; Sharma S; Debenedetti PG; Garde S; Patel AJ
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8181-6. PubMed ID: 26100866
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transferrable superhydrophobic surface constructed by a hexagonal CuI powder without modification by low-free-energy materials.
    Gao S; Li Z; Yang S; Jiang K; Li Y; Zeng H; Li L; Wang H
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):2080-5. PubMed ID: 20355836
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces.
    Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J
    Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Water Penetration through a Superhydrophobic Mesh During a Drop Impact.
    Ryu S; Sen P; Nam Y; Lee C
    Phys Rev Lett; 2017 Jan; 118(1):014501. PubMed ID: 28106449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the possibility of superhydrophobic behavior for hydrophilic materials.
    Cui XS; Li W
    J Colloid Interface Sci; 2010 Jul; 347(1):156-62. PubMed ID: 20417521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultimate Stable Underwater Superhydrophobic State.
    Xiang Y; Huang S; Lv P; Xue Y; Su Q; Duan H
    Phys Rev Lett; 2017 Sep; 119(13):134501. PubMed ID: 29341680
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimal design of superhydrophobic surfaces using a paraboloid microtexture.
    Tie L; Guo Z; Li W
    J Colloid Interface Sci; 2014 Dec; 436():19-28. PubMed ID: 25265581
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Durability and restoring of superhydrophobic properties in silica-based coatings.
    Mahadik SA; Fernando PD; Hegade ND; Wagh PB; Gupta SC
    J Colloid Interface Sci; 2013 Sep; 405():262-8. PubMed ID: 23746435
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polymer Brush Surfaces Showing Superhydrophobicity and Air-Bubble Repellency in a Variety of Organic Liquids.
    Dunderdale GJ; England MW; Urata C; Hozumi A
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):12220-9. PubMed ID: 25988214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sustaining Superheated Liquid within Hydrophilic Surface Texture.
    Jones PR; Elliott AR; Patankar NA
    Langmuir; 2016 Dec; 32(48):12947-12953. PubMed ID: 27802595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Superhydrophobicity: cavity growth and wetting transition.
    Wåhlander M; Hansson-Mille PM; Swerin A
    J Colloid Interface Sci; 2015 Jun; 448():482-91. PubMed ID: 25771290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Infinite lifetime of underwater superhydrophobic states.
    Xu M; Sun G; Kim CJ
    Phys Rev Lett; 2014 Sep; 113(13):136103. PubMed ID: 25302907
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dewetting Transitions of Dropwise Condensation on Nanotexture-Enhanced Superhydrophobic Surfaces.
    Lv C; Hao P; Zhang X; He F
    ACS Nano; 2015 Dec; 9(12):12311-9. PubMed ID: 26565420
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioinspired Interfaces with Superwettability: From Materials to Chemistry.
    Su B; Tian Y; Jiang L
    J Am Chem Soc; 2016 Feb; 138(6):1727-48. PubMed ID: 26652501
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strong, reversible underwater adhesion via gecko-inspired hydrophobic fibers.
    Soltannia B; Sameoto D
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21995-2003. PubMed ID: 25454841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air.
    Long J; Zhong M; Zhang H; Fan P
    J Colloid Interface Sci; 2015 Mar; 441():1-9. PubMed ID: 25481645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.