These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 28186902)
1. A Wearable Hip Assist Robot Can Improve Gait Function and Cardiopulmonary Metabolic Efficiency in Elderly Adults. Lee HJ; Lee S; Chang WH; Seo K; Shim Y; Choi BO; Ryu GH; Kim YH IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1549-1557. PubMed ID: 28186902 [TBL] [Abstract][Full Text] [Related]
2. Gait performance and foot pressure distribution during wearable robot-assisted gait in elderly adults. Lee SH; Lee HJ; Chang WH; Choi BO; Lee J; Kim J; Ryu GH; Kim YH J Neuroeng Rehabil; 2017 Nov; 14(1):123. PubMed ID: 29183379 [TBL] [Abstract][Full Text] [Related]
3. A wearable hip-assist robot reduces the cardiopulmonary metabolic energy expenditure during stair ascent in elderly adults: a pilot cross-sectional study. Kim DS; Lee HJ; Lee SH; Chang WH; Jang J; Choi BO; Ryu GH; Kim YH BMC Geriatr; 2018 Sep; 18(1):230. PubMed ID: 30268096 [TBL] [Abstract][Full Text] [Related]
4. WAKE-Up Exoskeleton to Assist Children With Cerebral Palsy: Design and Preliminary Evaluation in Level Walking. Patane F; Rossi S; Del Sette F; Taborri J; Cappa P IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):906-916. PubMed ID: 28092566 [TBL] [Abstract][Full Text] [Related]
5. Rehabilitative Soft Exoskeleton for Rodents. Florez JM; Shah M; Moraud EM; Wurth S; Baud L; Von Zitzewitz J; van den Brand R; Micera S; Courtine G; Paik J IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):107-118. PubMed ID: 28113858 [TBL] [Abstract][Full Text] [Related]
6. Design and Characterization of an Exoskeleton for Perturbing the Knee During Gait. Tucker MR; Shirota C; Lambercy O; Sulzer JS; Gassert R IEEE Trans Biomed Eng; 2017 Oct; 64(10):2331-2343. PubMed ID: 28113200 [TBL] [Abstract][Full Text] [Related]
7. The immediate effects of robot-assistance on energy consumption and cardiorespiratory load during walking compared to walking without robot-assistance: a systematic review. Lefeber N; Swinnen E; Kerckhofs E Disabil Rehabil Assist Technol; 2017 Oct; 12(7):657-671. PubMed ID: 27762641 [TBL] [Abstract][Full Text] [Related]
8. Training for Walking Efficiency With a Wearable Hip-Assist Robot in Patients With Stroke: A Pilot Randomized Controlled Trial. Lee HJ; Lee SH; Seo K; Lee M; Chang WH; Choi BO; Ryu GH; Kim YH Stroke; 2019 Dec; 50(12):3545-3552. PubMed ID: 31623545 [TBL] [Abstract][Full Text] [Related]
9. Gait-Event-Based Synchronization Method for Gait Rehabilitation Robots via a Bioinspired Adaptive Oscillator. Chen G; Qi P; Guo Z; Yu H IEEE Trans Biomed Eng; 2017 Jun; 64(6):1345-1356. PubMed ID: 28113222 [TBL] [Abstract][Full Text] [Related]
10. A Robotic Exoskeleton for Treatment of Crouch Gait in Children With Cerebral Palsy: Design and Initial Application. Lerner ZF; Damiano DL; Park HS; Gravunder AJ; Bulea TC IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):650-659. PubMed ID: 27479974 [TBL] [Abstract][Full Text] [Related]
11. Abnormal synergistic gait mitigation in acute stroke using an innovative ankle-knee-hip interlimb humanoid robot: a preliminary randomized controlled trial. Park C; Oh-Park M; Bialek A; Friel K; Edwards D; You JSH Sci Rep; 2021 Nov; 11(1):22823. PubMed ID: 34819515 [TBL] [Abstract][Full Text] [Related]
12. Improved walking ability with wearable robot-assisted training in patients suffering chronic stroke. Li L; Ding L; Chen N; Mao Y; Huang D; Li L Biomed Mater Eng; 2015; 26 Suppl 1():S329-40. PubMed ID: 26406020 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical and Physiological Evaluation of Multi-Joint Assistance With Soft Exosuits. Ding Y; Galiana I; Asbeck AT; De Rossi SM; Bae J; Santos TR; de Araujo VL; Lee S; Holt KG; Walsh C IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):119-130. PubMed ID: 26849868 [TBL] [Abstract][Full Text] [Related]
14. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot. Ao D; Song R; Gao J IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719 [TBL] [Abstract][Full Text] [Related]
15. Robot-mediated overground gait training for transfemoral amputees with a powered bilateral hip orthosis: a pilot study. Sanz-Morère CB; Martini E; Meoni B; Arnetoli G; Giffone A; Doronzio S; Fanciullacci C; Parri A; Conti R; Giovacchini F; Friðriksson Þ; Romo D; Crea S; Molino-Lova R; Vitiello N J Neuroeng Rehabil; 2021 Jul; 18(1):111. PubMed ID: 34217307 [TBL] [Abstract][Full Text] [Related]
16. Biomechanical effects of robot assisted walking on knee joint kinematics and muscle activation pattern. Thangavel P; Vidhya S; Li J; Chew E; Bezerianos A; Yu H IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():252-257. PubMed ID: 28813827 [TBL] [Abstract][Full Text] [Related]
17. Robust Control of a Cable-Driven Soft Exoskeleton Joint for Intrinsic Human-Robot Interaction. Jarrett C; McDaid AJ IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):976-986. PubMed ID: 28278475 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of joint moment patterns of a wearable walking assistant robot: Experimental and simulation analyses. Kang HC; Lee JH; Kim SM Biomed Mater Eng; 2015; 26 Suppl 1():S717-27. PubMed ID: 26406067 [TBL] [Abstract][Full Text] [Related]
19. A two-degree-of-freedom motor-powered gait orthosis for spinal cord injury patients. Ohta Y; Yano H; Suzuki R; Yoshida M; Kawashima N; Nakazawa K Proc Inst Mech Eng H; 2007 Aug; 221(6):629-39. PubMed ID: 17937202 [TBL] [Abstract][Full Text] [Related]
20. Effects of gait support in patients with spinocerebellar degeneration by a wearable robot based on synchronization control. Tsukahara A; Yoshida K; Matsushima A; Ajima K; Kuroda C; Mizukami N; Hashimoto M J Neuroeng Rehabil; 2018 Sep; 15(1):84. PubMed ID: 30231916 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]