BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 28186902)

  • 1. A Wearable Hip Assist Robot Can Improve Gait Function and Cardiopulmonary Metabolic Efficiency in Elderly Adults.
    Lee HJ; Lee S; Chang WH; Seo K; Shim Y; Choi BO; Ryu GH; Kim YH
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1549-1557. PubMed ID: 28186902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gait performance and foot pressure distribution during wearable robot-assisted gait in elderly adults.
    Lee SH; Lee HJ; Chang WH; Choi BO; Lee J; Kim J; Ryu GH; Kim YH
    J Neuroeng Rehabil; 2017 Nov; 14(1):123. PubMed ID: 29183379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A wearable hip-assist robot reduces the cardiopulmonary metabolic energy expenditure during stair ascent in elderly adults: a pilot cross-sectional study.
    Kim DS; Lee HJ; Lee SH; Chang WH; Jang J; Choi BO; Ryu GH; Kim YH
    BMC Geriatr; 2018 Sep; 18(1):230. PubMed ID: 30268096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. WAKE-Up Exoskeleton to Assist Children With Cerebral Palsy: Design and Preliminary Evaluation in Level Walking.
    Patane F; Rossi S; Del Sette F; Taborri J; Cappa P
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):906-916. PubMed ID: 28092566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rehabilitative Soft Exoskeleton for Rodents.
    Florez JM; Shah M; Moraud EM; Wurth S; Baud L; Von Zitzewitz J; van den Brand R; Micera S; Courtine G; Paik J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):107-118. PubMed ID: 28113858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Characterization of an Exoskeleton for Perturbing the Knee During Gait.
    Tucker MR; Shirota C; Lambercy O; Sulzer JS; Gassert R
    IEEE Trans Biomed Eng; 2017 Oct; 64(10):2331-2343. PubMed ID: 28113200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The immediate effects of robot-assistance on energy consumption and cardiorespiratory load during walking compared to walking without robot-assistance: a systematic review.
    Lefeber N; Swinnen E; Kerckhofs E
    Disabil Rehabil Assist Technol; 2017 Oct; 12(7):657-671. PubMed ID: 27762641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Training for Walking Efficiency With a Wearable Hip-Assist Robot in Patients With Stroke: A Pilot Randomized Controlled Trial.
    Lee HJ; Lee SH; Seo K; Lee M; Chang WH; Choi BO; Ryu GH; Kim YH
    Stroke; 2019 Dec; 50(12):3545-3552. PubMed ID: 31623545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait-Event-Based Synchronization Method for Gait Rehabilitation Robots via a Bioinspired Adaptive Oscillator.
    Chen G; Qi P; Guo Z; Yu H
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1345-1356. PubMed ID: 28113222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Robotic Exoskeleton for Treatment of Crouch Gait in Children With Cerebral Palsy: Design and Initial Application.
    Lerner ZF; Damiano DL; Park HS; Gravunder AJ; Bulea TC
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):650-659. PubMed ID: 27479974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abnormal synergistic gait mitigation in acute stroke using an innovative ankle-knee-hip interlimb humanoid robot: a preliminary randomized controlled trial.
    Park C; Oh-Park M; Bialek A; Friel K; Edwards D; You JSH
    Sci Rep; 2021 Nov; 11(1):22823. PubMed ID: 34819515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved walking ability with wearable robot-assisted training in patients suffering chronic stroke.
    Li L; Ding L; Chen N; Mao Y; Huang D; Li L
    Biomed Mater Eng; 2015; 26 Suppl 1():S329-40. PubMed ID: 26406020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical and Physiological Evaluation of Multi-Joint Assistance With Soft Exosuits.
    Ding Y; Galiana I; Asbeck AT; De Rossi SM; Bae J; Santos TR; de Araujo VL; Lee S; Holt KG; Walsh C
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):119-130. PubMed ID: 26849868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot.
    Ao D; Song R; Gao J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robot-mediated overground gait training for transfemoral amputees with a powered bilateral hip orthosis: a pilot study.
    Sanz-Morère CB; Martini E; Meoni B; Arnetoli G; Giffone A; Doronzio S; Fanciullacci C; Parri A; Conti R; Giovacchini F; Friðriksson Þ; Romo D; Crea S; Molino-Lova R; Vitiello N
    J Neuroeng Rehabil; 2021 Jul; 18(1):111. PubMed ID: 34217307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical effects of robot assisted walking on knee joint kinematics and muscle activation pattern.
    Thangavel P; Vidhya S; Li J; Chew E; Bezerianos A; Yu H
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():252-257. PubMed ID: 28813827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust Control of a Cable-Driven Soft Exoskeleton Joint for Intrinsic Human-Robot Interaction.
    Jarrett C; McDaid AJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):976-986. PubMed ID: 28278475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of joint moment patterns of a wearable walking assistant robot: Experimental and simulation analyses.
    Kang HC; Lee JH; Kim SM
    Biomed Mater Eng; 2015; 26 Suppl 1():S717-27. PubMed ID: 26406067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A two-degree-of-freedom motor-powered gait orthosis for spinal cord injury patients.
    Ohta Y; Yano H; Suzuki R; Yoshida M; Kawashima N; Nakazawa K
    Proc Inst Mech Eng H; 2007 Aug; 221(6):629-39. PubMed ID: 17937202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of gait support in patients with spinocerebellar degeneration by a wearable robot based on synchronization control.
    Tsukahara A; Yoshida K; Matsushima A; Ajima K; Kuroda C; Mizukami N; Hashimoto M
    J Neuroeng Rehabil; 2018 Sep; 15(1):84. PubMed ID: 30231916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.